Solve for x
x = \frac{7}{6} = 1\frac{1}{6} \approx 1.166666667
Graph
Share
Copied to clipboard
-\left(6x-6-\left(1+x\right)\right)-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
Use the distributive property to multiply 2 by 3x-3.
-\left(6x-6-1-x\right)-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
To find the opposite of 1+x, find the opposite of each term.
-\left(6x-7-x\right)-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
Subtract 1 from -6 to get -7.
-\left(5x-7\right)-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
Combine 6x and -x to get 5x.
-5x-\left(-7\right)-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
To find the opposite of 5x-7, find the opposite of each term.
-5x+7-\left(5\left(3-2x\right)-\left(1+x\right)\right)=0
The opposite of -7 is 7.
-5x+7-\left(15-10x-\left(1+x\right)\right)=0
Use the distributive property to multiply 5 by 3-2x.
-5x+7-\left(15-10x-1-x\right)=0
To find the opposite of 1+x, find the opposite of each term.
-5x+7-\left(14-10x-x\right)=0
Subtract 1 from 15 to get 14.
-5x+7-\left(14-11x\right)=0
Combine -10x and -x to get -11x.
-5x+7-14-\left(-11x\right)=0
To find the opposite of 14-11x, find the opposite of each term.
-5x+7-14+11x=0
The opposite of -11x is 11x.
-5x-7+11x=0
Subtract 14 from 7 to get -7.
6x-7=0
Combine -5x and 11x to get 6x.
6x=7
Add 7 to both sides. Anything plus zero gives itself.
x=\frac{7}{6}
Divide both sides by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}