Evaluate
3a+b+c
Expand
3a+b+c
Quiz
Algebra
5 problems similar to:
- [ - a + [ - a + ( a - b ) - ( a - b + c ) - [ - ( - a ) + b ] ] ]
Share
Copied to clipboard
-\left(-a+-a+a-b-a-\left(-b\right)-c-\left(-\left(-a\right)+b\right)\right)
To find the opposite of a-b+c, find the opposite of each term.
-\left(-a+-a+a-b-a+b-c-\left(-\left(-a\right)+b\right)\right)
The opposite of -b is b.
-\left(-a+-a-b+b-c-\left(-\left(-a\right)+b\right)\right)
Combine a and -a to get 0.
-\left(-a+-a-c-\left(-\left(-a\right)+b\right)\right)
Combine -b and b to get 0.
-\left(-a-a-c-\left(-\left(-a\right)\right)-b\right)
To find the opposite of -\left(-a\right)+b, find the opposite of each term.
-\left(2\left(-a\right)-c-\left(-\left(-a\right)\right)-b\right)
Combine -a and -a to get 2\left(-a\right).
-2\left(-a\right)-\left(-c\right)-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
To find the opposite of 2\left(-a\right)-c-\left(-\left(-a\right)\right)-b, find the opposite of each term.
2a-\left(-c\right)-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
Multiply -2 and -1 to get 2.
2a+c-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
The opposite of -c is c.
2a+c-\left(-\left(-\left(-a\right)\right)\right)+b
The opposite of -b is b.
2a+c-\left(-a\right)+b
Multiply -1 and -1 to get 1.
2a+c+a+b
Multiply -1 and -1 to get 1.
3a+c+b
Combine 2a and a to get 3a.
-\left(-a+-a+a-b-a-\left(-b\right)-c-\left(-\left(-a\right)+b\right)\right)
To find the opposite of a-b+c, find the opposite of each term.
-\left(-a+-a+a-b-a+b-c-\left(-\left(-a\right)+b\right)\right)
The opposite of -b is b.
-\left(-a+-a-b+b-c-\left(-\left(-a\right)+b\right)\right)
Combine a and -a to get 0.
-\left(-a+-a-c-\left(-\left(-a\right)+b\right)\right)
Combine -b and b to get 0.
-\left(-a-a-c-\left(-\left(-a\right)\right)-b\right)
To find the opposite of -\left(-a\right)+b, find the opposite of each term.
-\left(2\left(-a\right)-c-\left(-\left(-a\right)\right)-b\right)
Combine -a and -a to get 2\left(-a\right).
-2\left(-a\right)-\left(-c\right)-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
To find the opposite of 2\left(-a\right)-c-\left(-\left(-a\right)\right)-b, find the opposite of each term.
2a-\left(-c\right)-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
Multiply -2 and -1 to get 2.
2a+c-\left(-\left(-\left(-a\right)\right)\right)-\left(-b\right)
The opposite of -c is c.
2a+c-\left(-\left(-\left(-a\right)\right)\right)+b
The opposite of -b is b.
2a+c-\left(-a\right)+b
Multiply -1 and -1 to get 1.
2a+c+a+b
Multiply -1 and -1 to get 1.
3a+c+b
Combine 2a and a to get 3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}