Evaluate
\frac{x^{2}\left(6x^{2}+5x+5\right)}{2}
Expand
3x^{4}+\frac{5x^{3}}{2}+\frac{5x^{2}}{2}
Graph
Share
Copied to clipboard
-\left(-\frac{1}{2}\left(2x^{3}+5x^{2}-3x\right)-\frac{3}{2}\left(2x^{4}+x^{3}+0x^{2}+x\right)\right)
Anything plus zero gives itself.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-\frac{3}{2}\left(2x^{4}+x^{3}+0x^{2}+x\right)\right)
Use the distributive property to multiply -\frac{1}{2} by 2x^{3}+5x^{2}-3x.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-\frac{3}{2}\left(2x^{4}+x^{3}+x\right)\right)
Anything times zero gives zero.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-3x^{4}-\frac{3}{2}x^{3}-\frac{3}{2}x\right)
Use the distributive property to multiply -\frac{3}{2} by 2x^{4}+x^{3}+x.
-\left(-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-3x^{4}-\frac{3}{2}x\right)
Combine -x^{3} and -\frac{3}{2}x^{3} to get -\frac{5}{2}x^{3}.
-\left(-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}-3x^{4}\right)
Combine \frac{3}{2}x and -\frac{3}{2}x to get 0.
\frac{5}{2}x^{3}+\frac{5}{2}x^{2}+3x^{4}
To find the opposite of -\frac{5}{2}x^{3}-\frac{5}{2}x^{2}-3x^{4}, find the opposite of each term.
-\left(-\frac{1}{2}\left(2x^{3}+5x^{2}-3x\right)-\frac{3}{2}\left(2x^{4}+x^{3}+0x^{2}+x\right)\right)
Anything plus zero gives itself.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-\frac{3}{2}\left(2x^{4}+x^{3}+0x^{2}+x\right)\right)
Use the distributive property to multiply -\frac{1}{2} by 2x^{3}+5x^{2}-3x.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-\frac{3}{2}\left(2x^{4}+x^{3}+x\right)\right)
Anything times zero gives zero.
-\left(-x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-3x^{4}-\frac{3}{2}x^{3}-\frac{3}{2}x\right)
Use the distributive property to multiply -\frac{3}{2} by 2x^{4}+x^{3}+x.
-\left(-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}+\frac{3}{2}x-3x^{4}-\frac{3}{2}x\right)
Combine -x^{3} and -\frac{3}{2}x^{3} to get -\frac{5}{2}x^{3}.
-\left(-\frac{5}{2}x^{3}-\frac{5}{2}x^{2}-3x^{4}\right)
Combine \frac{3}{2}x and -\frac{3}{2}x to get 0.
\frac{5}{2}x^{3}+\frac{5}{2}x^{2}+3x^{4}
To find the opposite of -\frac{5}{2}x^{3}-\frac{5}{2}x^{2}-3x^{4}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}