Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. n
Tick mark Image

Similar Problems from Web Search

Share

\left(-\left(\frac{m^{3}}{\frac{1^{-2}}{n^{-2}}}\right)^{-1}\right)m^{-5}
To raise \frac{1}{n} to a power, raise both numerator and denominator to the power and then divide.
\left(-\left(\frac{m^{3}n^{-2}}{1^{-2}}\right)^{-1}\right)m^{-5}
Divide m^{3} by \frac{1^{-2}}{n^{-2}} by multiplying m^{3} by the reciprocal of \frac{1^{-2}}{n^{-2}}.
\left(-\left(\frac{m^{3}n^{-2}}{1}\right)^{-1}\right)m^{-5}
Calculate 1 to the power of -2 and get 1.
\left(-\left(m^{3}n^{-2}\right)^{-1}\right)m^{-5}
Anything divided by one gives itself.
\left(-\left(m^{3}\right)^{-1}\left(n^{-2}\right)^{-1}\right)m^{-5}
Expand \left(m^{3}n^{-2}\right)^{-1}.
\left(-m^{-3}\left(n^{-2}\right)^{-1}\right)m^{-5}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\left(-m^{-3}n^{2}\right)m^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
-m^{-8}n^{2}
To multiply powers of the same base, add their exponents. Add -3 and -5 to get -8.