Evaluate
-\frac{n^{2}}{m^{8}}
Differentiate w.r.t. n
-\frac{2n}{m^{8}}
Share
Copied to clipboard
\left(-\left(\frac{m^{3}}{\frac{1^{-2}}{n^{-2}}}\right)^{-1}\right)m^{-5}
To raise \frac{1}{n} to a power, raise both numerator and denominator to the power and then divide.
\left(-\left(\frac{m^{3}n^{-2}}{1^{-2}}\right)^{-1}\right)m^{-5}
Divide m^{3} by \frac{1^{-2}}{n^{-2}} by multiplying m^{3} by the reciprocal of \frac{1^{-2}}{n^{-2}}.
\left(-\left(\frac{m^{3}n^{-2}}{1}\right)^{-1}\right)m^{-5}
Calculate 1 to the power of -2 and get 1.
\left(-\left(m^{3}n^{-2}\right)^{-1}\right)m^{-5}
Anything divided by one gives itself.
\left(-\left(m^{3}\right)^{-1}\left(n^{-2}\right)^{-1}\right)m^{-5}
Expand \left(m^{3}n^{-2}\right)^{-1}.
\left(-m^{-3}\left(n^{-2}\right)^{-1}\right)m^{-5}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\left(-m^{-3}n^{2}\right)m^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and -1 to get 2.
-m^{-8}n^{2}
To multiply powers of the same base, add their exponents. Add -3 and -5 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}