Solve for y
y=-\frac{x\left(3x+1\right)}{\left(x+1\right)^{2}}
x\neq -1
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{-2y+\sqrt{1-8y}-1}{2\left(y+3\right)}\text{; }x=-\frac{2y+\sqrt{1-8y}+1}{2\left(y+3\right)}\text{, }&y\neq -3\\x=-\frac{3}{5}=-0.6\text{, }&y=-3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{-2y+\sqrt{1-8y}-1}{2\left(y+3\right)}\text{; }x=-\frac{2y+\sqrt{1-8y}+1}{2\left(y+3\right)}\text{, }&y\neq -3\text{ and }y\leq \frac{1}{8}\\x=-\frac{3}{5}=-0.6\text{, }&y=-3\end{matrix}\right.
Graph
Share
Copied to clipboard
yx^{2}+3x^{2}+\left(2y+1\right)x+y=0
Use the distributive property to multiply y+3 by x^{2}.
yx^{2}+3x^{2}+2yx+x+y=0
Use the distributive property to multiply 2y+1 by x.
yx^{2}+2yx+x+y=-3x^{2}
Subtract 3x^{2} from both sides. Anything subtracted from zero gives its negation.
yx^{2}+2yx+y=-3x^{2}-x
Subtract x from both sides.
\left(x^{2}+2x+1\right)y=-3x^{2}-x
Combine all terms containing y.
\frac{\left(x^{2}+2x+1\right)y}{x^{2}+2x+1}=-\frac{x\left(3x+1\right)}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
y=-\frac{x\left(3x+1\right)}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
y=-\frac{x\left(3x+1\right)}{\left(x+1\right)^{2}}
Divide -x\left(1+3x\right) by x^{2}+2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}