Solve for x
x=-2+\frac{126}{x_{2}}
x_{2}\neq 0
Solve for x_2
x_{2}=\frac{126}{x+2}
x\neq -2
Graph
Share
Copied to clipboard
x_{2}x+2x_{2}=126
Use the distributive property to multiply x_{2} by x+2.
x_{2}x=126-2x_{2}
Subtract 2x_{2} from both sides.
\frac{x_{2}x}{x_{2}}=\frac{126-2x_{2}}{x_{2}}
Divide both sides by x_{2}.
x=\frac{126-2x_{2}}{x_{2}}
Dividing by x_{2} undoes the multiplication by x_{2}.
x=-2+\frac{126}{x_{2}}
Divide 126-2x_{2} by x_{2}.
x_{2}x+2x_{2}=126
Use the distributive property to multiply x_{2} by x+2.
\left(x+2\right)x_{2}=126
Combine all terms containing x_{2}.
\frac{\left(x+2\right)x_{2}}{x+2}=\frac{126}{x+2}
Divide both sides by x+2.
x_{2}=\frac{126}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}