Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-17x+72=90
Use the distributive property to multiply x-8 by x-9 and combine like terms.
x^{2}-17x+72-90=0
Subtract 90 from both sides.
x^{2}-17x-18=0
Subtract 90 from 72 to get -18.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\left(-18\right)}}{2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289+72}}{2}
Multiply -4 times -18.
x=\frac{-\left(-17\right)±\sqrt{361}}{2}
Add 289 to 72.
x=\frac{-\left(-17\right)±19}{2}
Take the square root of 361.
x=\frac{17±19}{2}
The opposite of -17 is 17.
x=\frac{36}{2}
Now solve the equation x=\frac{17±19}{2} when ± is plus. Add 17 to 19.
x=18
Divide 36 by 2.
x=-\frac{2}{2}
Now solve the equation x=\frac{17±19}{2} when ± is minus. Subtract 19 from 17.
x=-1
Divide -2 by 2.
x=18 x=-1
The equation is now solved.
x^{2}-17x+72=90
Use the distributive property to multiply x-8 by x-9 and combine like terms.
x^{2}-17x=90-72
Subtract 72 from both sides.
x^{2}-17x=18
Subtract 72 from 90 to get 18.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=18+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=18+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{361}{4}
Add 18 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{361}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{19}{2} x-\frac{17}{2}=-\frac{19}{2}
Simplify.
x=18 x=-1
Add \frac{17}{2} to both sides of the equation.