Evaluate
\left(x-7\right)\left(x^{2}-14x+28\right)
Expand
x^{3}-21x^{2}+126x-196
Graph
Share
Copied to clipboard
\left(x^{2}-10x-5x+50\right)\left(x-6\right)-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Apply the distributive property by multiplying each term of x-5 by each term of x-10.
\left(x^{2}-15x+50\right)\left(x-6\right)-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine -10x and -5x to get -15x.
x^{3}-6x^{2}-15x^{2}+90x+50x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Apply the distributive property by multiplying each term of x^{2}-15x+50 by each term of x-6.
x^{3}-21x^{2}+90x+50x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine -6x^{2} and -15x^{2} to get -21x^{2}.
x^{3}-21x^{2}+140x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine 90x and 50x to get 140x.
x^{3}-21x^{2}+140x-312-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Subtract 12 from -300 to get -312.
x^{3}-21x^{2}+140x-312-9x+90-\left(x-6\right)-4\left(x-5\right)
Use the distributive property to multiply -9 by x-10.
x^{3}-21x^{2}+131x-312+90-\left(x-6\right)-4\left(x-5\right)
Combine 140x and -9x to get 131x.
x^{3}-21x^{2}+131x-222-\left(x-6\right)-4\left(x-5\right)
Add -312 and 90 to get -222.
x^{3}-21x^{2}+131x-222-x-\left(-6\right)-4\left(x-5\right)
To find the opposite of x-6, find the opposite of each term.
x^{3}-21x^{2}+131x-222-x+6-4\left(x-5\right)
The opposite of -6 is 6.
x^{3}-21x^{2}+130x-222+6-4\left(x-5\right)
Combine 131x and -x to get 130x.
x^{3}-21x^{2}+130x-216-4\left(x-5\right)
Add -222 and 6 to get -216.
x^{3}-21x^{2}+130x-216-4x+20
Use the distributive property to multiply -4 by x-5.
x^{3}-21x^{2}+126x-216+20
Combine 130x and -4x to get 126x.
x^{3}-21x^{2}+126x-196
Add -216 and 20 to get -196.
\left(x^{2}-10x-5x+50\right)\left(x-6\right)-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Apply the distributive property by multiplying each term of x-5 by each term of x-10.
\left(x^{2}-15x+50\right)\left(x-6\right)-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine -10x and -5x to get -15x.
x^{3}-6x^{2}-15x^{2}+90x+50x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Apply the distributive property by multiplying each term of x^{2}-15x+50 by each term of x-6.
x^{3}-21x^{2}+90x+50x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine -6x^{2} and -15x^{2} to get -21x^{2}.
x^{3}-21x^{2}+140x-300-12-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Combine 90x and 50x to get 140x.
x^{3}-21x^{2}+140x-312-9\left(x-10\right)-\left(x-6\right)-4\left(x-5\right)
Subtract 12 from -300 to get -312.
x^{3}-21x^{2}+140x-312-9x+90-\left(x-6\right)-4\left(x-5\right)
Use the distributive property to multiply -9 by x-10.
x^{3}-21x^{2}+131x-312+90-\left(x-6\right)-4\left(x-5\right)
Combine 140x and -9x to get 131x.
x^{3}-21x^{2}+131x-222-\left(x-6\right)-4\left(x-5\right)
Add -312 and 90 to get -222.
x^{3}-21x^{2}+131x-222-x-\left(-6\right)-4\left(x-5\right)
To find the opposite of x-6, find the opposite of each term.
x^{3}-21x^{2}+131x-222-x+6-4\left(x-5\right)
The opposite of -6 is 6.
x^{3}-21x^{2}+130x-222+6-4\left(x-5\right)
Combine 131x and -x to get 130x.
x^{3}-21x^{2}+130x-216-4\left(x-5\right)
Add -222 and 6 to get -216.
x^{3}-21x^{2}+130x-216-4x+20
Use the distributive property to multiply -4 by x-5.
x^{3}-21x^{2}+126x-216+20
Combine 130x and -4x to get 126x.
x^{3}-21x^{2}+126x-196
Add -216 and 20 to get -196.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}