Solve for x
x = \frac{\sqrt{59} + 3}{2} \approx 5.340572874
x=\frac{3-\sqrt{59}}{2}\approx -2.340572874
Graph
Share
Copied to clipboard
\left(x-5\right)\left(x+2\right)=\frac{5}{6}\times 3
Multiply both sides by 3.
x^{2}-3x-10=\frac{5}{6}\times 3
Use the distributive property to multiply x-5 by x+2 and combine like terms.
x^{2}-3x-10=\frac{5}{2}
Multiply \frac{5}{6} and 3 to get \frac{5}{2}.
x^{2}-3x-10-\frac{5}{2}=0
Subtract \frac{5}{2} from both sides.
x^{2}-3x-\frac{25}{2}=0
Subtract \frac{5}{2} from -10 to get -\frac{25}{2}.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-\frac{25}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -\frac{25}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-\frac{25}{2}\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+50}}{2}
Multiply -4 times -\frac{25}{2}.
x=\frac{-\left(-3\right)±\sqrt{59}}{2}
Add 9 to 50.
x=\frac{3±\sqrt{59}}{2}
The opposite of -3 is 3.
x=\frac{\sqrt{59}+3}{2}
Now solve the equation x=\frac{3±\sqrt{59}}{2} when ± is plus. Add 3 to \sqrt{59}.
x=\frac{3-\sqrt{59}}{2}
Now solve the equation x=\frac{3±\sqrt{59}}{2} when ± is minus. Subtract \sqrt{59} from 3.
x=\frac{\sqrt{59}+3}{2} x=\frac{3-\sqrt{59}}{2}
The equation is now solved.
\left(x-5\right)\left(x+2\right)=\frac{5}{6}\times 3
Multiply both sides by 3.
x^{2}-3x-10=\frac{5}{6}\times 3
Use the distributive property to multiply x-5 by x+2 and combine like terms.
x^{2}-3x-10=\frac{5}{2}
Multiply \frac{5}{6} and 3 to get \frac{5}{2}.
x^{2}-3x=\frac{5}{2}+10
Add 10 to both sides.
x^{2}-3x=\frac{25}{2}
Add \frac{5}{2} and 10 to get \frac{25}{2}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{25}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{25}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{59}{4}
Add \frac{25}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{59}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{59}}{2} x-\frac{3}{2}=-\frac{\sqrt{59}}{2}
Simplify.
x=\frac{\sqrt{59}+3}{2} x=\frac{3-\sqrt{59}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}