Solve for x
x=60
x=70
Graph
Share
Copied to clipboard
-4x^{2}+520x-14400=2400
Use the distributive property to multiply x-40 by -4x+360 and combine like terms.
-4x^{2}+520x-14400-2400=0
Subtract 2400 from both sides.
-4x^{2}+520x-16800=0
Subtract 2400 from -14400 to get -16800.
x=\frac{-520±\sqrt{520^{2}-4\left(-4\right)\left(-16800\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 520 for b, and -16800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-520±\sqrt{270400-4\left(-4\right)\left(-16800\right)}}{2\left(-4\right)}
Square 520.
x=\frac{-520±\sqrt{270400+16\left(-16800\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-520±\sqrt{270400-268800}}{2\left(-4\right)}
Multiply 16 times -16800.
x=\frac{-520±\sqrt{1600}}{2\left(-4\right)}
Add 270400 to -268800.
x=\frac{-520±40}{2\left(-4\right)}
Take the square root of 1600.
x=\frac{-520±40}{-8}
Multiply 2 times -4.
x=-\frac{480}{-8}
Now solve the equation x=\frac{-520±40}{-8} when ± is plus. Add -520 to 40.
x=60
Divide -480 by -8.
x=-\frac{560}{-8}
Now solve the equation x=\frac{-520±40}{-8} when ± is minus. Subtract 40 from -520.
x=70
Divide -560 by -8.
x=60 x=70
The equation is now solved.
-4x^{2}+520x-14400=2400
Use the distributive property to multiply x-40 by -4x+360 and combine like terms.
-4x^{2}+520x=2400+14400
Add 14400 to both sides.
-4x^{2}+520x=16800
Add 2400 and 14400 to get 16800.
\frac{-4x^{2}+520x}{-4}=\frac{16800}{-4}
Divide both sides by -4.
x^{2}+\frac{520}{-4}x=\frac{16800}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-130x=\frac{16800}{-4}
Divide 520 by -4.
x^{2}-130x=-4200
Divide 16800 by -4.
x^{2}-130x+\left(-65\right)^{2}=-4200+\left(-65\right)^{2}
Divide -130, the coefficient of the x term, by 2 to get -65. Then add the square of -65 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-130x+4225=-4200+4225
Square -65.
x^{2}-130x+4225=25
Add -4200 to 4225.
\left(x-65\right)^{2}=25
Factor x^{2}-130x+4225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-65\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-65=5 x-65=-5
Simplify.
x=70 x=60
Add 65 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}