Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}-6x-x\sqrt{2}-4x+24+4\sqrt{2}\right)\left(x-6+\sqrt{2}\right)
Apply the distributive property by multiplying each term of x-4 by each term of x-6-\sqrt{2}.
\left(x^{2}-10x-x\sqrt{2}+24+4\sqrt{2}\right)\left(x-6+\sqrt{2}\right)
Combine -6x and -4x to get -10x.
x^{3}-6x^{2}+x^{2}\sqrt{2}-10x^{2}+60x-10x\sqrt{2}-\sqrt{2}x^{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of x^{2}-10x-x\sqrt{2}+24+4\sqrt{2} by each term of x-6+\sqrt{2}.
x^{3}-16x^{2}+x^{2}\sqrt{2}+60x-10x\sqrt{2}-\sqrt{2}x^{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine -6x^{2} and -10x^{2} to get -16x^{2}.
x^{3}-16x^{2}+60x-10x\sqrt{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine x^{2}\sqrt{2} and -\sqrt{2}x^{2} to get 0.
x^{3}-16x^{2}+60x-4x\sqrt{2}-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine -10x\sqrt{2} and 6\sqrt{2}x to get -4x\sqrt{2}.
x^{3}-16x^{2}+60x-4x\sqrt{2}-x\times 2+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
x^{3}-16x^{2}+60x-4x\sqrt{2}-2x+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Multiply -1 and 2 to get -2.
x^{3}-16x^{2}+58x-4x\sqrt{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine 60x and -2x to get 58x.
x^{3}-16x^{2}+82x-4x\sqrt{2}-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine 58x and 24x to get 82x.
x^{3}-16x^{2}+82x-144+24\sqrt{2}-24\sqrt{2}+4\left(\sqrt{2}\right)^{2}
Combine -4x\sqrt{2} and 4\sqrt{2}x to get 0.
x^{3}-16x^{2}+82x-144+4\left(\sqrt{2}\right)^{2}
Combine 24\sqrt{2} and -24\sqrt{2} to get 0.
x^{3}-16x^{2}+82x-144+4\times 2
The square of \sqrt{2} is 2.
x^{3}-16x^{2}+82x-144+8
Multiply 4 and 2 to get 8.
x^{3}-16x^{2}+82x-136
Add -144 and 8 to get -136.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-6x-x\sqrt{2}-4x+24+4\sqrt{2}\right)\left(x-6+\sqrt{2}\right))
Apply the distributive property by multiplying each term of x-4 by each term of x-6-\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-10x-x\sqrt{2}+24+4\sqrt{2}\right)\left(x-6+\sqrt{2}\right))
Combine -6x and -4x to get -10x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-6x^{2}+x^{2}\sqrt{2}-10x^{2}+60x-10x\sqrt{2}-\sqrt{2}x^{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Apply the distributive property by multiplying each term of x^{2}-10x-x\sqrt{2}+24+4\sqrt{2} by each term of x-6+\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+x^{2}\sqrt{2}+60x-10x\sqrt{2}-\sqrt{2}x^{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine -6x^{2} and -10x^{2} to get -16x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+60x-10x\sqrt{2}+6\sqrt{2}x-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine x^{2}\sqrt{2} and -\sqrt{2}x^{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+60x-4x\sqrt{2}-x\left(\sqrt{2}\right)^{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine -10x\sqrt{2} and 6\sqrt{2}x to get -4x\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+60x-4x\sqrt{2}-x\times 2+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+60x-4x\sqrt{2}-2x+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Multiply -1 and 2 to get -2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+58x-4x\sqrt{2}+24x-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine 60x and -2x to get 58x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-4x\sqrt{2}-144+24\sqrt{2}+4\sqrt{2}x-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine 58x and 24x to get 82x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-144+24\sqrt{2}-24\sqrt{2}+4\left(\sqrt{2}\right)^{2})
Combine -4x\sqrt{2} and 4\sqrt{2}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-144+4\left(\sqrt{2}\right)^{2})
Combine 24\sqrt{2} and -24\sqrt{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-144+4\times 2)
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-144+8)
Multiply 4 and 2 to get 8.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-16x^{2}+82x-136)
Add -144 and 8 to get -136.
3x^{3-1}+2\left(-16\right)x^{2-1}+82x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
3x^{2}+2\left(-16\right)x^{2-1}+82x^{1-1}
Subtract 1 from 3.
3x^{2}-32x^{2-1}+82x^{1-1}
Multiply 2 times -16.
3x^{2}-32x^{1}+82x^{1-1}
Subtract 1 from 2.
3x^{2}-32x^{1}+82x^{0}
Subtract 1 from 1.
3x^{2}-32x+82x^{0}
For any term t, t^{1}=t.
3x^{2}-32x+82\times 1
For any term t except 0, t^{0}=1.
3x^{2}-32x+82
For any term t, t\times 1=t and 1t=t.