Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-16=7
Consider \left(x-4\right)\left(x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
x^{2}=7+16
Add 16 to both sides.
x^{2}=23
Add 7 and 16 to get 23.
x=\sqrt{23} x=-\sqrt{23}
Take the square root of both sides of the equation.
x^{2}-16=7
Consider \left(x-4\right)\left(x+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
x^{2}-16-7=0
Subtract 7 from both sides.
x^{2}-23=0
Subtract 7 from -16 to get -23.
x=\frac{0±\sqrt{0^{2}-4\left(-23\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-23\right)}}{2}
Square 0.
x=\frac{0±\sqrt{92}}{2}
Multiply -4 times -23.
x=\frac{0±2\sqrt{23}}{2}
Take the square root of 92.
x=\sqrt{23}
Now solve the equation x=\frac{0±2\sqrt{23}}{2} when ± is plus.
x=-\sqrt{23}
Now solve the equation x=\frac{0±2\sqrt{23}}{2} when ± is minus.
x=\sqrt{23} x=-\sqrt{23}
The equation is now solved.