Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-35\right)\left(x+13\right)=253575
Subtract 25 from 38 to get 13.
x^{2}-22x-455=253575
Use the distributive property to multiply x-35 by x+13 and combine like terms.
x^{2}-22x-455-253575=0
Subtract 253575 from both sides.
x^{2}-22x-254030=0
Subtract 253575 from -455 to get -254030.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-254030\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -22 for b, and -254030 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-254030\right)}}{2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484+1016120}}{2}
Multiply -4 times -254030.
x=\frac{-\left(-22\right)±\sqrt{1016604}}{2}
Add 484 to 1016120.
x=\frac{-\left(-22\right)±6\sqrt{28239}}{2}
Take the square root of 1016604.
x=\frac{22±6\sqrt{28239}}{2}
The opposite of -22 is 22.
x=\frac{6\sqrt{28239}+22}{2}
Now solve the equation x=\frac{22±6\sqrt{28239}}{2} when ± is plus. Add 22 to 6\sqrt{28239}.
x=3\sqrt{28239}+11
Divide 22+6\sqrt{28239} by 2.
x=\frac{22-6\sqrt{28239}}{2}
Now solve the equation x=\frac{22±6\sqrt{28239}}{2} when ± is minus. Subtract 6\sqrt{28239} from 22.
x=11-3\sqrt{28239}
Divide 22-6\sqrt{28239} by 2.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
The equation is now solved.
\left(x-35\right)\left(x+13\right)=253575
Subtract 25 from 38 to get 13.
x^{2}-22x-455=253575
Use the distributive property to multiply x-35 by x+13 and combine like terms.
x^{2}-22x=253575+455
Add 455 to both sides.
x^{2}-22x=254030
Add 253575 and 455 to get 254030.
x^{2}-22x+\left(-11\right)^{2}=254030+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-22x+121=254030+121
Square -11.
x^{2}-22x+121=254151
Add 254030 to 121.
\left(x-11\right)^{2}=254151
Factor x^{2}-22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{254151}
Take the square root of both sides of the equation.
x-11=3\sqrt{28239} x-11=-3\sqrt{28239}
Simplify.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Add 11 to both sides of the equation.