Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

252x-3x^{2}-4860=420
Use the distributive property to multiply x-30 by 162-3x and combine like terms.
252x-3x^{2}-4860-420=0
Subtract 420 from both sides.
252x-3x^{2}-5280=0
Subtract 420 from -4860 to get -5280.
-3x^{2}+252x-5280=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-252±\sqrt{252^{2}-4\left(-3\right)\left(-5280\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 252 for b, and -5280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-252±\sqrt{63504-4\left(-3\right)\left(-5280\right)}}{2\left(-3\right)}
Square 252.
x=\frac{-252±\sqrt{63504+12\left(-5280\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-252±\sqrt{63504-63360}}{2\left(-3\right)}
Multiply 12 times -5280.
x=\frac{-252±\sqrt{144}}{2\left(-3\right)}
Add 63504 to -63360.
x=\frac{-252±12}{2\left(-3\right)}
Take the square root of 144.
x=\frac{-252±12}{-6}
Multiply 2 times -3.
x=-\frac{240}{-6}
Now solve the equation x=\frac{-252±12}{-6} when ± is plus. Add -252 to 12.
x=40
Divide -240 by -6.
x=-\frac{264}{-6}
Now solve the equation x=\frac{-252±12}{-6} when ± is minus. Subtract 12 from -252.
x=44
Divide -264 by -6.
x=40 x=44
The equation is now solved.
252x-3x^{2}-4860=420
Use the distributive property to multiply x-30 by 162-3x and combine like terms.
252x-3x^{2}=420+4860
Add 4860 to both sides.
252x-3x^{2}=5280
Add 420 and 4860 to get 5280.
-3x^{2}+252x=5280
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+252x}{-3}=\frac{5280}{-3}
Divide both sides by -3.
x^{2}+\frac{252}{-3}x=\frac{5280}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-84x=\frac{5280}{-3}
Divide 252 by -3.
x^{2}-84x=-1760
Divide 5280 by -3.
x^{2}-84x+\left(-42\right)^{2}=-1760+\left(-42\right)^{2}
Divide -84, the coefficient of the x term, by 2 to get -42. Then add the square of -42 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-84x+1764=-1760+1764
Square -42.
x^{2}-84x+1764=4
Add -1760 to 1764.
\left(x-42\right)^{2}=4
Factor x^{2}-84x+1764. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-42\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-42=2 x-42=-2
Simplify.
x=44 x=40
Add 42 to both sides of the equation.