Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
x^{2}-5x+6-3\left(x-1\right)=\left(x-1\right)^{2}-1
Use the distributive property to multiply x-3 by x-2 and combine like terms.
x^{2}-5x+6-3x+3=\left(x-1\right)^{2}-1
Use the distributive property to multiply -3 by x-1.
x^{2}-8x+6+3=\left(x-1\right)^{2}-1
Combine -5x and -3x to get -8x.
x^{2}-8x+9=\left(x-1\right)^{2}-1
Add 6 and 3 to get 9.
x^{2}-8x+9=x^{2}-2x+1-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-8x+9=x^{2}-2x
Subtract 1 from 1 to get 0.
x^{2}-8x+9-x^{2}=-2x
Subtract x^{2} from both sides.
-8x+9=-2x
Combine x^{2} and -x^{2} to get 0.
-8x+9+2x=0
Add 2x to both sides.
-6x+9=0
Combine -8x and 2x to get -6x.
-6x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9}{-6}
Divide both sides by -6.
x=\frac{3}{2}
Reduce the fraction \frac{-9}{-6} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}