Solve for x
x=2\sqrt{7}+5\approx 10.291502622
x=5-2\sqrt{7}\approx -0.291502622
Graph
Share
Copied to clipboard
2x^{2}-5x-3=x\left(x+5\right)
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
2x^{2}-5x-3=x^{2}+5x
Use the distributive property to multiply x by x+5.
2x^{2}-5x-3-x^{2}=5x
Subtract x^{2} from both sides.
x^{2}-5x-3=5x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-5x-3-5x=0
Subtract 5x from both sides.
x^{2}-10x-3=0
Combine -5x and -5x to get -10x.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+12}}{2}
Multiply -4 times -3.
x=\frac{-\left(-10\right)±\sqrt{112}}{2}
Add 100 to 12.
x=\frac{-\left(-10\right)±4\sqrt{7}}{2}
Take the square root of 112.
x=\frac{10±4\sqrt{7}}{2}
The opposite of -10 is 10.
x=\frac{4\sqrt{7}+10}{2}
Now solve the equation x=\frac{10±4\sqrt{7}}{2} when ± is plus. Add 10 to 4\sqrt{7}.
x=2\sqrt{7}+5
Divide 10+4\sqrt{7} by 2.
x=\frac{10-4\sqrt{7}}{2}
Now solve the equation x=\frac{10±4\sqrt{7}}{2} when ± is minus. Subtract 4\sqrt{7} from 10.
x=5-2\sqrt{7}
Divide 10-4\sqrt{7} by 2.
x=2\sqrt{7}+5 x=5-2\sqrt{7}
The equation is now solved.
2x^{2}-5x-3=x\left(x+5\right)
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
2x^{2}-5x-3=x^{2}+5x
Use the distributive property to multiply x by x+5.
2x^{2}-5x-3-x^{2}=5x
Subtract x^{2} from both sides.
x^{2}-5x-3=5x
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-5x-3-5x=0
Subtract 5x from both sides.
x^{2}-10x-3=0
Combine -5x and -5x to get -10x.
x^{2}-10x=3
Add 3 to both sides. Anything plus zero gives itself.
x^{2}-10x+\left(-5\right)^{2}=3+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=3+25
Square -5.
x^{2}-10x+25=28
Add 3 to 25.
\left(x-5\right)^{2}=28
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x-5=2\sqrt{7} x-5=-2\sqrt{7}
Simplify.
x=2\sqrt{7}+5 x=5-2\sqrt{7}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}