Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4041x+4082420=6
Use the distributive property to multiply x-2020 by x-2021 and combine like terms.
x^{2}-4041x+4082420-6=0
Subtract 6 from both sides.
x^{2}-4041x+4082414=0
Subtract 6 from 4082420 to get 4082414.
x=\frac{-\left(-4041\right)±\sqrt{\left(-4041\right)^{2}-4\times 4082414}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4041 for b, and 4082414 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4041\right)±\sqrt{16329681-4\times 4082414}}{2}
Square -4041.
x=\frac{-\left(-4041\right)±\sqrt{16329681-16329656}}{2}
Multiply -4 times 4082414.
x=\frac{-\left(-4041\right)±\sqrt{25}}{2}
Add 16329681 to -16329656.
x=\frac{-\left(-4041\right)±5}{2}
Take the square root of 25.
x=\frac{4041±5}{2}
The opposite of -4041 is 4041.
x=\frac{4046}{2}
Now solve the equation x=\frac{4041±5}{2} when ± is plus. Add 4041 to 5.
x=2023
Divide 4046 by 2.
x=\frac{4036}{2}
Now solve the equation x=\frac{4041±5}{2} when ± is minus. Subtract 5 from 4041.
x=2018
Divide 4036 by 2.
x=2023 x=2018
The equation is now solved.
x^{2}-4041x+4082420=6
Use the distributive property to multiply x-2020 by x-2021 and combine like terms.
x^{2}-4041x=6-4082420
Subtract 4082420 from both sides.
x^{2}-4041x=-4082414
Subtract 4082420 from 6 to get -4082414.
x^{2}-4041x+\left(-\frac{4041}{2}\right)^{2}=-4082414+\left(-\frac{4041}{2}\right)^{2}
Divide -4041, the coefficient of the x term, by 2 to get -\frac{4041}{2}. Then add the square of -\frac{4041}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4041x+\frac{16329681}{4}=-4082414+\frac{16329681}{4}
Square -\frac{4041}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-4041x+\frac{16329681}{4}=\frac{25}{4}
Add -4082414 to \frac{16329681}{4}.
\left(x-\frac{4041}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-4041x+\frac{16329681}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4041}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{4041}{2}=\frac{5}{2} x-\frac{4041}{2}=-\frac{5}{2}
Simplify.
x=2023 x=2018
Add \frac{4041}{2} to both sides of the equation.