Solve for x
x=\frac{3\sqrt{5}}{5}+1\approx 2.341640786
x=-\frac{3\sqrt{5}}{5}+1\approx -0.341640786
Graph
Share
Copied to clipboard
\left(180x-360\right)x=144
Use the distributive property to multiply x-2 by 180.
180x^{2}-360x=144
Use the distributive property to multiply 180x-360 by x.
180x^{2}-360x-144=0
Subtract 144 from both sides.
x=\frac{-\left(-360\right)±\sqrt{\left(-360\right)^{2}-4\times 180\left(-144\right)}}{2\times 180}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 180 for a, -360 for b, and -144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-360\right)±\sqrt{129600-4\times 180\left(-144\right)}}{2\times 180}
Square -360.
x=\frac{-\left(-360\right)±\sqrt{129600-720\left(-144\right)}}{2\times 180}
Multiply -4 times 180.
x=\frac{-\left(-360\right)±\sqrt{129600+103680}}{2\times 180}
Multiply -720 times -144.
x=\frac{-\left(-360\right)±\sqrt{233280}}{2\times 180}
Add 129600 to 103680.
x=\frac{-\left(-360\right)±216\sqrt{5}}{2\times 180}
Take the square root of 233280.
x=\frac{360±216\sqrt{5}}{2\times 180}
The opposite of -360 is 360.
x=\frac{360±216\sqrt{5}}{360}
Multiply 2 times 180.
x=\frac{216\sqrt{5}+360}{360}
Now solve the equation x=\frac{360±216\sqrt{5}}{360} when ± is plus. Add 360 to 216\sqrt{5}.
x=\frac{3\sqrt{5}}{5}+1
Divide 360+216\sqrt{5} by 360.
x=\frac{360-216\sqrt{5}}{360}
Now solve the equation x=\frac{360±216\sqrt{5}}{360} when ± is minus. Subtract 216\sqrt{5} from 360.
x=-\frac{3\sqrt{5}}{5}+1
Divide 360-216\sqrt{5} by 360.
x=\frac{3\sqrt{5}}{5}+1 x=-\frac{3\sqrt{5}}{5}+1
The equation is now solved.
\left(180x-360\right)x=144
Use the distributive property to multiply x-2 by 180.
180x^{2}-360x=144
Use the distributive property to multiply 180x-360 by x.
\frac{180x^{2}-360x}{180}=\frac{144}{180}
Divide both sides by 180.
x^{2}+\left(-\frac{360}{180}\right)x=\frac{144}{180}
Dividing by 180 undoes the multiplication by 180.
x^{2}-2x=\frac{144}{180}
Divide -360 by 180.
x^{2}-2x=\frac{4}{5}
Reduce the fraction \frac{144}{180} to lowest terms by extracting and canceling out 36.
x^{2}-2x+1=\frac{4}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{9}{5}
Add \frac{4}{5} to 1.
\left(x-1\right)^{2}=\frac{9}{5}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{5}}
Take the square root of both sides of the equation.
x-1=\frac{3\sqrt{5}}{5} x-1=-\frac{3\sqrt{5}}{5}
Simplify.
x=\frac{3\sqrt{5}}{5}+1 x=-\frac{3\sqrt{5}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}