Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}-5x+6\right)\left(x-4\right)=\left(x-2\right)\left(x-3\right)\left(x-5\right)
Use the distributive property to multiply x-2 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24=\left(x-2\right)\left(x-3\right)\left(x-5\right)
Use the distributive property to multiply x^{2}-5x+6 by x-4 and combine like terms.
x^{3}-9x^{2}+26x-24=\left(x^{2}-5x+6\right)\left(x-5\right)
Use the distributive property to multiply x-2 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24=x^{3}-10x^{2}+31x-30
Use the distributive property to multiply x^{2}-5x+6 by x-5 and combine like terms.
x^{3}-9x^{2}+26x-24-x^{3}=-10x^{2}+31x-30
Subtract x^{3} from both sides.
-9x^{2}+26x-24=-10x^{2}+31x-30
Combine x^{3} and -x^{3} to get 0.
-9x^{2}+26x-24+10x^{2}=31x-30
Add 10x^{2} to both sides.
x^{2}+26x-24=31x-30
Combine -9x^{2} and 10x^{2} to get x^{2}.
x^{2}+26x-24-31x=-30
Subtract 31x from both sides.
x^{2}-5x-24=-30
Combine 26x and -31x to get -5x.
x^{2}-5x-24+30=0
Add 30 to both sides.
x^{2}-5x+6=0
Add -24 and 30 to get 6.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-5\right)±\sqrt{1}}{2}
Add 25 to -24.
x=\frac{-\left(-5\right)±1}{2}
Take the square root of 1.
x=\frac{5±1}{2}
The opposite of -5 is 5.
x=\frac{6}{2}
Now solve the equation x=\frac{5±1}{2} when ± is plus. Add 5 to 1.
x=3
Divide 6 by 2.
x=\frac{4}{2}
Now solve the equation x=\frac{5±1}{2} when ± is minus. Subtract 1 from 5.
x=2
Divide 4 by 2.
x=3 x=2
The equation is now solved.
\left(x^{2}-5x+6\right)\left(x-4\right)=\left(x-2\right)\left(x-3\right)\left(x-5\right)
Use the distributive property to multiply x-2 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24=\left(x-2\right)\left(x-3\right)\left(x-5\right)
Use the distributive property to multiply x^{2}-5x+6 by x-4 and combine like terms.
x^{3}-9x^{2}+26x-24=\left(x^{2}-5x+6\right)\left(x-5\right)
Use the distributive property to multiply x-2 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24=x^{3}-10x^{2}+31x-30
Use the distributive property to multiply x^{2}-5x+6 by x-5 and combine like terms.
x^{3}-9x^{2}+26x-24-x^{3}=-10x^{2}+31x-30
Subtract x^{3} from both sides.
-9x^{2}+26x-24=-10x^{2}+31x-30
Combine x^{3} and -x^{3} to get 0.
-9x^{2}+26x-24+10x^{2}=31x-30
Add 10x^{2} to both sides.
x^{2}+26x-24=31x-30
Combine -9x^{2} and 10x^{2} to get x^{2}.
x^{2}+26x-24-31x=-30
Subtract 31x from both sides.
x^{2}-5x-24=-30
Combine 26x and -31x to get -5x.
x^{2}-5x=-30+24
Add 24 to both sides.
x^{2}-5x=-6
Add -30 and 24 to get -6.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Simplify.
x=3 x=2
Add \frac{5}{2} to both sides of the equation.