Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\left(2\sqrt{10}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-2^{2}\left(\sqrt{10}\right)^{2}
Expand \left(2\sqrt{10}\right)^{2}.
x^{2}-4\left(\sqrt{10}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-4\times 10
The square of \sqrt{10} is 10.
x^{2}-40
Multiply 4 and 10 to get 40.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-\left(2\sqrt{10}\right)^{2})
Consider \left(x-2\sqrt{10}\right)\left(x+2\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2^{2}\left(\sqrt{10}\right)^{2})
Expand \left(2\sqrt{10}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4\left(\sqrt{10}\right)^{2})
Calculate 2 to the power of 2 and get 4.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4\times 10)
The square of \sqrt{10} is 10.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-40)
Multiply 4 and 10 to get 40.
2x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
2x^{1}
Subtract 1 from 2.
2x
For any term t, t^{1}=t.