Solve for x
x = \frac{153}{8} = 19\frac{1}{8} = 19.125
x = \frac{127}{8} = 15\frac{7}{8} = 15.875
Graph
Share
Copied to clipboard
x^{2}-35x+304=\frac{25}{64}
Use the distributive property to multiply x-19 by x-16 and combine like terms.
x^{2}-35x+304-\frac{25}{64}=0
Subtract \frac{25}{64} from both sides.
x^{2}-35x+\frac{19431}{64}=0
Subtract \frac{25}{64} from 304 to get \frac{19431}{64}.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times \frac{19431}{64}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -35 for b, and \frac{19431}{64} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times \frac{19431}{64}}}{2}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-\frac{19431}{16}}}{2}
Multiply -4 times \frac{19431}{64}.
x=\frac{-\left(-35\right)±\sqrt{\frac{169}{16}}}{2}
Add 1225 to -\frac{19431}{16}.
x=\frac{-\left(-35\right)±\frac{13}{4}}{2}
Take the square root of \frac{169}{16}.
x=\frac{35±\frac{13}{4}}{2}
The opposite of -35 is 35.
x=\frac{\frac{153}{4}}{2}
Now solve the equation x=\frac{35±\frac{13}{4}}{2} when ± is plus. Add 35 to \frac{13}{4}.
x=\frac{153}{8}
Divide \frac{153}{4} by 2.
x=\frac{\frac{127}{4}}{2}
Now solve the equation x=\frac{35±\frac{13}{4}}{2} when ± is minus. Subtract \frac{13}{4} from 35.
x=\frac{127}{8}
Divide \frac{127}{4} by 2.
x=\frac{153}{8} x=\frac{127}{8}
The equation is now solved.
x^{2}-35x+304=\frac{25}{64}
Use the distributive property to multiply x-19 by x-16 and combine like terms.
x^{2}-35x=\frac{25}{64}-304
Subtract 304 from both sides.
x^{2}-35x=-\frac{19431}{64}
Subtract 304 from \frac{25}{64} to get -\frac{19431}{64}.
x^{2}-35x+\left(-\frac{35}{2}\right)^{2}=-\frac{19431}{64}+\left(-\frac{35}{2}\right)^{2}
Divide -35, the coefficient of the x term, by 2 to get -\frac{35}{2}. Then add the square of -\frac{35}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-35x+\frac{1225}{4}=-\frac{19431}{64}+\frac{1225}{4}
Square -\frac{35}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-35x+\frac{1225}{4}=\frac{169}{64}
Add -\frac{19431}{64} to \frac{1225}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{2}\right)^{2}=\frac{169}{64}
Factor x^{2}-35x+\frac{1225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{2}\right)^{2}}=\sqrt{\frac{169}{64}}
Take the square root of both sides of the equation.
x-\frac{35}{2}=\frac{13}{8} x-\frac{35}{2}=-\frac{13}{8}
Simplify.
x=\frac{153}{8} x=\frac{127}{8}
Add \frac{35}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}