Solve for x
x=180
Graph
Share
Copied to clipboard
1800x-5x^{2}-130000=32000
Use the distributive property to multiply x-100 by 1300-5x and combine like terms.
1800x-5x^{2}-130000-32000=0
Subtract 32000 from both sides.
1800x-5x^{2}-162000=0
Subtract 32000 from -130000 to get -162000.
-5x^{2}+1800x-162000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-5\right)\left(-162000\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 1800 for b, and -162000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1800±\sqrt{3240000-4\left(-5\right)\left(-162000\right)}}{2\left(-5\right)}
Square 1800.
x=\frac{-1800±\sqrt{3240000+20\left(-162000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-1800±\sqrt{3240000-3240000}}{2\left(-5\right)}
Multiply 20 times -162000.
x=\frac{-1800±\sqrt{0}}{2\left(-5\right)}
Add 3240000 to -3240000.
x=-\frac{1800}{2\left(-5\right)}
Take the square root of 0.
x=-\frac{1800}{-10}
Multiply 2 times -5.
x=180
Divide -1800 by -10.
1800x-5x^{2}-130000=32000
Use the distributive property to multiply x-100 by 1300-5x and combine like terms.
1800x-5x^{2}=32000+130000
Add 130000 to both sides.
1800x-5x^{2}=162000
Add 32000 and 130000 to get 162000.
-5x^{2}+1800x=162000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+1800x}{-5}=\frac{162000}{-5}
Divide both sides by -5.
x^{2}+\frac{1800}{-5}x=\frac{162000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-360x=\frac{162000}{-5}
Divide 1800 by -5.
x^{2}-360x=-32400
Divide 162000 by -5.
x^{2}-360x+\left(-180\right)^{2}=-32400+\left(-180\right)^{2}
Divide -360, the coefficient of the x term, by 2 to get -180. Then add the square of -180 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-360x+32400=-32400+32400
Square -180.
x^{2}-360x+32400=0
Add -32400 to 32400.
\left(x-180\right)^{2}=0
Factor x^{2}-360x+32400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-180\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-180=0 x-180=0
Simplify.
x=180 x=180
Add 180 to both sides of the equation.
x=180
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}