Evaluate
\frac{\left(2x-1\right)\left(x+2\right)\left(x^{2}-1\right)}{2}
Expand
x^{4}+\frac{3x^{3}}{2}-2x^{2}-\frac{3x}{2}+1
Graph
Share
Copied to clipboard
\left(x^{2}+x-x-1\right)\left(x+2\right)\left(x-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x-1 by each term of x+1.
\left(x^{2}-1\right)\left(x+2\right)\left(x-\frac{1}{2}\right)
Combine x and -x to get 0.
\left(x^{3}+2x^{2}-x-2\right)\left(x-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{2}-1 by each term of x+2.
x^{4}+x^{3}\left(-\frac{1}{2}\right)+2x^{3}+2x^{2}\left(-\frac{1}{2}\right)-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{3}+2x^{2}-x-2 by each term of x-\frac{1}{2}.
x^{4}+\frac{3}{2}x^{3}+2x^{2}\left(-\frac{1}{2}\right)-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Combine x^{3}\left(-\frac{1}{2}\right) and 2x^{3} to get \frac{3}{2}x^{3}.
x^{4}+\frac{3}{2}x^{3}-x^{2}-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Cancel out 2 and 2.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{4}+\frac{3}{2}x^{3}-2x^{2}+\frac{1}{2}x-2x-2\left(-\frac{1}{2}\right)
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-\frac{3}{2}x-2\left(-\frac{1}{2}\right)
Combine \frac{1}{2}x and -2x to get -\frac{3}{2}x.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-\frac{3}{2}x+1
Multiply -2 times -\frac{1}{2}.
\left(x^{2}+x-x-1\right)\left(x+2\right)\left(x-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x-1 by each term of x+1.
\left(x^{2}-1\right)\left(x+2\right)\left(x-\frac{1}{2}\right)
Combine x and -x to get 0.
\left(x^{3}+2x^{2}-x-2\right)\left(x-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{2}-1 by each term of x+2.
x^{4}+x^{3}\left(-\frac{1}{2}\right)+2x^{3}+2x^{2}\left(-\frac{1}{2}\right)-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Apply the distributive property by multiplying each term of x^{3}+2x^{2}-x-2 by each term of x-\frac{1}{2}.
x^{4}+\frac{3}{2}x^{3}+2x^{2}\left(-\frac{1}{2}\right)-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Combine x^{3}\left(-\frac{1}{2}\right) and 2x^{3} to get \frac{3}{2}x^{3}.
x^{4}+\frac{3}{2}x^{3}-x^{2}-x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Cancel out 2 and 2.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-x\left(-\frac{1}{2}\right)-2x-2\left(-\frac{1}{2}\right)
Combine -x^{2} and -x^{2} to get -2x^{2}.
x^{4}+\frac{3}{2}x^{3}-2x^{2}+\frac{1}{2}x-2x-2\left(-\frac{1}{2}\right)
Multiply -1 and -\frac{1}{2} to get \frac{1}{2}.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-\frac{3}{2}x-2\left(-\frac{1}{2}\right)
Combine \frac{1}{2}x and -2x to get -\frac{3}{2}x.
x^{4}+\frac{3}{2}x^{3}-2x^{2}-\frac{3}{2}x+1
Multiply -2 times -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}