Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(x-1\right)\left(\frac{3}{30}+\frac{2}{30}\right)=\frac{1}{12}
Least common multiple of 10 and 15 is 30. Convert \frac{1}{10} and \frac{1}{15} to fractions with denominator 30.
\left(x-1\right)\times \frac{3+2}{30}=\frac{1}{12}
Since \frac{3}{30} and \frac{2}{30} have the same denominator, add them by adding their numerators.
\left(x-1\right)\times \frac{5}{30}=\frac{1}{12}
Add 3 and 2 to get 5.
\left(x-1\right)\times \frac{1}{6}=\frac{1}{12}
Reduce the fraction \frac{5}{30} to lowest terms by extracting and canceling out 5.
x\times \frac{1}{6}-\frac{1}{6}=\frac{1}{12}
Use the distributive property to multiply x-1 by \frac{1}{6}.
x\times \frac{1}{6}=\frac{1}{12}+\frac{1}{6}
Add \frac{1}{6} to both sides.
x\times \frac{1}{6}=\frac{1}{12}+\frac{2}{12}
Least common multiple of 12 and 6 is 12. Convert \frac{1}{12} and \frac{1}{6} to fractions with denominator 12.
x\times \frac{1}{6}=\frac{1+2}{12}
Since \frac{1}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
x\times \frac{1}{6}=\frac{3}{12}
Add 1 and 2 to get 3.
x\times \frac{1}{6}=\frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
x=\frac{1}{4}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}.
x=\frac{6}{4}
Multiply \frac{1}{4} and 6 to get \frac{6}{4}.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}