Solve for x
x=\frac{336}{y+48}
y\neq -48
Solve for y
y=-48+\frac{336}{x}
x\neq 0
Graph
Share
Copied to clipboard
\left(x-0\right)\left(y+48\right)=336
Multiply 0 and 8 to get 0.
\left(x-0\right)y+48\left(x-0\right)=336
Use the distributive property to multiply x-0 by y+48.
xy+48x=336
Reorder the terms.
\left(y+48\right)x=336
Combine all terms containing x.
\frac{\left(y+48\right)x}{y+48}=\frac{336}{y+48}
Divide both sides by y+48.
x=\frac{336}{y+48}
Dividing by y+48 undoes the multiplication by y+48.
\left(x-0\right)\left(y+48\right)=336
Multiply 0 and 8 to get 0.
\left(x-0\right)y+48\left(x-0\right)=336
Use the distributive property to multiply x-0 by y+48.
\left(x-0\right)y=336-48\left(x-0\right)
Subtract 48\left(x-0\right) from both sides.
xy=336-48x
Reorder the terms.
\frac{xy}{x}=\frac{336-48x}{x}
Divide both sides by x.
y=\frac{336-48x}{x}
Dividing by x undoes the multiplication by x.
y=-48+\frac{336}{x}
Divide 336-48x by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}