Solve for x
x = \frac{493}{10} = 49\frac{3}{10} = 49.3
Graph
Share
Copied to clipboard
x\times \frac{8}{7}-\frac{3}{10}\times \frac{8}{7}=105-x+\frac{3}{10}
Use the distributive property to multiply x-\frac{3}{10} by \frac{8}{7}.
x\times \frac{8}{7}+\frac{-3\times 8}{10\times 7}=105-x+\frac{3}{10}
Multiply -\frac{3}{10} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{8}{7}+\frac{-24}{70}=105-x+\frac{3}{10}
Do the multiplications in the fraction \frac{-3\times 8}{10\times 7}.
x\times \frac{8}{7}-\frac{12}{35}=105-x+\frac{3}{10}
Reduce the fraction \frac{-24}{70} to lowest terms by extracting and canceling out 2.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1050}{10}-x+\frac{3}{10}
Convert 105 to fraction \frac{1050}{10}.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1050+3}{10}-x
Since \frac{1050}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
x\times \frac{8}{7}-\frac{12}{35}=\frac{1053}{10}-x
Add 1050 and 3 to get 1053.
x\times \frac{8}{7}-\frac{12}{35}+x=\frac{1053}{10}
Add x to both sides.
\frac{15}{7}x-\frac{12}{35}=\frac{1053}{10}
Combine x\times \frac{8}{7} and x to get \frac{15}{7}x.
\frac{15}{7}x=\frac{1053}{10}+\frac{12}{35}
Add \frac{12}{35} to both sides.
\frac{15}{7}x=\frac{7371}{70}+\frac{24}{70}
Least common multiple of 10 and 35 is 70. Convert \frac{1053}{10} and \frac{12}{35} to fractions with denominator 70.
\frac{15}{7}x=\frac{7371+24}{70}
Since \frac{7371}{70} and \frac{24}{70} have the same denominator, add them by adding their numerators.
\frac{15}{7}x=\frac{7395}{70}
Add 7371 and 24 to get 7395.
\frac{15}{7}x=\frac{1479}{14}
Reduce the fraction \frac{7395}{70} to lowest terms by extracting and canceling out 5.
x=\frac{1479}{14}\times \frac{7}{15}
Multiply both sides by \frac{7}{15}, the reciprocal of \frac{15}{7}.
x=\frac{1479\times 7}{14\times 15}
Multiply \frac{1479}{14} times \frac{7}{15} by multiplying numerator times numerator and denominator times denominator.
x=\frac{10353}{210}
Do the multiplications in the fraction \frac{1479\times 7}{14\times 15}.
x=\frac{493}{10}
Reduce the fraction \frac{10353}{210} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}