Solve for x
x = \frac{25 \sqrt{2} - 25}{2} \approx 5.17766953
x=\frac{-25\sqrt{2}-25}{2}\approx -30.17766953
Graph
Share
Copied to clipboard
x-\frac{25}{4}+\frac{1}{25}x^{2}=0
Add \frac{1}{25}x^{2} to both sides.
\frac{1}{25}x^{2}+x-\frac{25}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{25}\left(-\frac{25}{4}\right)}}{2\times \frac{1}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{25} for a, 1 for b, and -\frac{25}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{25}\left(-\frac{25}{4}\right)}}{2\times \frac{1}{25}}
Square 1.
x=\frac{-1±\sqrt{1-\frac{4}{25}\left(-\frac{25}{4}\right)}}{2\times \frac{1}{25}}
Multiply -4 times \frac{1}{25}.
x=\frac{-1±\sqrt{1+1}}{2\times \frac{1}{25}}
Multiply -\frac{4}{25} times -\frac{25}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-1±\sqrt{2}}{2\times \frac{1}{25}}
Add 1 to 1.
x=\frac{-1±\sqrt{2}}{\frac{2}{25}}
Multiply 2 times \frac{1}{25}.
x=\frac{\sqrt{2}-1}{\frac{2}{25}}
Now solve the equation x=\frac{-1±\sqrt{2}}{\frac{2}{25}} when ± is plus. Add -1 to \sqrt{2}.
x=\frac{25\sqrt{2}-25}{2}
Divide -1+\sqrt{2} by \frac{2}{25} by multiplying -1+\sqrt{2} by the reciprocal of \frac{2}{25}.
x=\frac{-\sqrt{2}-1}{\frac{2}{25}}
Now solve the equation x=\frac{-1±\sqrt{2}}{\frac{2}{25}} when ± is minus. Subtract \sqrt{2} from -1.
x=\frac{-25\sqrt{2}-25}{2}
Divide -1-\sqrt{2} by \frac{2}{25} by multiplying -1-\sqrt{2} by the reciprocal of \frac{2}{25}.
x=\frac{25\sqrt{2}-25}{2} x=\frac{-25\sqrt{2}-25}{2}
The equation is now solved.
x-\frac{25}{4}+\frac{1}{25}x^{2}=0
Add \frac{1}{25}x^{2} to both sides.
x+\frac{1}{25}x^{2}=\frac{25}{4}
Add \frac{25}{4} to both sides. Anything plus zero gives itself.
\frac{1}{25}x^{2}+x=\frac{25}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{25}x^{2}+x}{\frac{1}{25}}=\frac{\frac{25}{4}}{\frac{1}{25}}
Multiply both sides by 25.
x^{2}+\frac{1}{\frac{1}{25}}x=\frac{\frac{25}{4}}{\frac{1}{25}}
Dividing by \frac{1}{25} undoes the multiplication by \frac{1}{25}.
x^{2}+25x=\frac{\frac{25}{4}}{\frac{1}{25}}
Divide 1 by \frac{1}{25} by multiplying 1 by the reciprocal of \frac{1}{25}.
x^{2}+25x=\frac{625}{4}
Divide \frac{25}{4} by \frac{1}{25} by multiplying \frac{25}{4} by the reciprocal of \frac{1}{25}.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=\frac{625}{4}+\left(\frac{25}{2}\right)^{2}
Divide 25, the coefficient of the x term, by 2 to get \frac{25}{2}. Then add the square of \frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+25x+\frac{625}{4}=\frac{625+625}{4}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+25x+\frac{625}{4}=\frac{625}{2}
Add \frac{625}{4} to \frac{625}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{2}\right)^{2}=\frac{625}{2}
Factor x^{2}+25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{2}}
Take the square root of both sides of the equation.
x+\frac{25}{2}=\frac{25\sqrt{2}}{2} x+\frac{25}{2}=-\frac{25\sqrt{2}}{2}
Simplify.
x=\frac{25\sqrt{2}-25}{2} x=\frac{-25\sqrt{2}-25}{2}
Subtract \frac{25}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}