Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}-x-\frac{1}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Apply the distributive property by multiplying each term of x-\frac{1}{3} by each term of x-1.
\left(x^{2}-\frac{4}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Combine -x and -\frac{1}{3}x to get -\frac{4}{3}x.
\left(x^{2}-\frac{4}{3}x+\frac{1}{3}\right)\left(x-2\right)
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x^{3}-2x^{2}-\frac{4}{3}xx-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Apply the distributive property by multiplying each term of x^{2}-\frac{4}{3}x+\frac{1}{3} by each term of x-2.
x^{3}-2x^{2}-\frac{4}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply x and x to get x^{2}.
x^{3}-\frac{10}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Combine -2x^{2} and -\frac{4}{3}x^{2} to get -\frac{10}{3}x^{2}.
x^{3}-\frac{10}{3}x^{2}+\frac{-4\left(-2\right)}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Express -\frac{4}{3}\left(-2\right) as a single fraction.
x^{3}-\frac{10}{3}x^{2}+\frac{8}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply -4 and -2 to get 8.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{1}{3}\left(-2\right)
Combine \frac{8}{3}x and \frac{1}{3}x to get 3x.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
x^{3}-\frac{10}{3}x^{2}+3x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\left(x^{2}-x-\frac{1}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Apply the distributive property by multiplying each term of x-\frac{1}{3} by each term of x-1.
\left(x^{2}-\frac{4}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Combine -x and -\frac{1}{3}x to get -\frac{4}{3}x.
\left(x^{2}-\frac{4}{3}x+\frac{1}{3}\right)\left(x-2\right)
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x^{3}-2x^{2}-\frac{4}{3}xx-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Apply the distributive property by multiplying each term of x^{2}-\frac{4}{3}x+\frac{1}{3} by each term of x-2.
x^{3}-2x^{2}-\frac{4}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply x and x to get x^{2}.
x^{3}-\frac{10}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Combine -2x^{2} and -\frac{4}{3}x^{2} to get -\frac{10}{3}x^{2}.
x^{3}-\frac{10}{3}x^{2}+\frac{-4\left(-2\right)}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Express -\frac{4}{3}\left(-2\right) as a single fraction.
x^{3}-\frac{10}{3}x^{2}+\frac{8}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply -4 and -2 to get 8.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{1}{3}\left(-2\right)
Combine \frac{8}{3}x and \frac{1}{3}x to get 3x.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
x^{3}-\frac{10}{3}x^{2}+3x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.