Evaluate
\frac{\left(x-2\right)\left(x-1\right)\left(3x-1\right)}{3}
Expand
x^{3}-\frac{10x^{2}}{3}+3x-\frac{2}{3}
Graph
Share
Copied to clipboard
\left(x^{2}-x-\frac{1}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Apply the distributive property by multiplying each term of x-\frac{1}{3} by each term of x-1.
\left(x^{2}-\frac{4}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Combine -x and -\frac{1}{3}x to get -\frac{4}{3}x.
\left(x^{2}-\frac{4}{3}x+\frac{1}{3}\right)\left(x-2\right)
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x^{3}-2x^{2}-\frac{4}{3}xx-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Apply the distributive property by multiplying each term of x^{2}-\frac{4}{3}x+\frac{1}{3} by each term of x-2.
x^{3}-2x^{2}-\frac{4}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply x and x to get x^{2}.
x^{3}-\frac{10}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Combine -2x^{2} and -\frac{4}{3}x^{2} to get -\frac{10}{3}x^{2}.
x^{3}-\frac{10}{3}x^{2}+\frac{-4\left(-2\right)}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Express -\frac{4}{3}\left(-2\right) as a single fraction.
x^{3}-\frac{10}{3}x^{2}+\frac{8}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply -4 and -2 to get 8.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{1}{3}\left(-2\right)
Combine \frac{8}{3}x and \frac{1}{3}x to get 3x.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
x^{3}-\frac{10}{3}x^{2}+3x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\left(x^{2}-x-\frac{1}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Apply the distributive property by multiplying each term of x-\frac{1}{3} by each term of x-1.
\left(x^{2}-\frac{4}{3}x-\frac{1}{3}\left(-1\right)\right)\left(x-2\right)
Combine -x and -\frac{1}{3}x to get -\frac{4}{3}x.
\left(x^{2}-\frac{4}{3}x+\frac{1}{3}\right)\left(x-2\right)
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
x^{3}-2x^{2}-\frac{4}{3}xx-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Apply the distributive property by multiplying each term of x^{2}-\frac{4}{3}x+\frac{1}{3} by each term of x-2.
x^{3}-2x^{2}-\frac{4}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply x and x to get x^{2}.
x^{3}-\frac{10}{3}x^{2}-\frac{4}{3}x\left(-2\right)+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Combine -2x^{2} and -\frac{4}{3}x^{2} to get -\frac{10}{3}x^{2}.
x^{3}-\frac{10}{3}x^{2}+\frac{-4\left(-2\right)}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Express -\frac{4}{3}\left(-2\right) as a single fraction.
x^{3}-\frac{10}{3}x^{2}+\frac{8}{3}x+\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Multiply -4 and -2 to get 8.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{1}{3}\left(-2\right)
Combine \frac{8}{3}x and \frac{1}{3}x to get 3x.
x^{3}-\frac{10}{3}x^{2}+3x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
x^{3}-\frac{10}{3}x^{2}+3x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}