Evaluate
x^{2}-\frac{1}{2}
Differentiate w.r.t. x
2x
Graph
Share
Copied to clipboard
\left(x-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\left(x+\frac{1}{\sqrt{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(x-\frac{\sqrt{2}}{2}\right)\left(x+\frac{1}{\sqrt{2}}\right)
The square of \sqrt{2} is 2.
\left(\frac{2x}{2}-\frac{\sqrt{2}}{2}\right)\left(x+\frac{1}{\sqrt{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x-\sqrt{2}}{2}\left(x+\frac{1}{\sqrt{2}}\right)
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-\sqrt{2}}{2}\left(x+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2x-\sqrt{2}}{2}\left(x+\frac{\sqrt{2}}{2}\right)
The square of \sqrt{2} is 2.
\frac{2x-\sqrt{2}}{2}\left(\frac{2x}{2}+\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\frac{2x-\sqrt{2}}{2}\times \frac{2x+\sqrt{2}}{2}
Since \frac{2x}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(2x-\sqrt{2}\right)\left(2x+\sqrt{2}\right)}{2\times 2}
Multiply \frac{2x-\sqrt{2}}{2} times \frac{2x+\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(2x\right)^{2}-\left(\sqrt{2}\right)^{2}}{2\times 2}
Consider \left(2x-\sqrt{2}\right)\left(2x+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2^{2}x^{2}-\left(\sqrt{2}\right)^{2}}{2\times 2}
Expand \left(2x\right)^{2}.
\frac{4x^{2}-\left(\sqrt{2}\right)^{2}}{2\times 2}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-2}{2\times 2}
The square of \sqrt{2} is 2.
\frac{4x^{2}-2}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}