Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-49-\left(x+2\right)^{2}=5\left(x-2\right)+x-7
Consider \left(x+7\right)\left(x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
x^{2}-49-\left(x^{2}+4x+4\right)=5\left(x-2\right)+x-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-49-x^{2}-4x-4=5\left(x-2\right)+x-7
To find the opposite of x^{2}+4x+4, find the opposite of each term.
-49-4x-4=5\left(x-2\right)+x-7
Combine x^{2} and -x^{2} to get 0.
-53-4x=5\left(x-2\right)+x-7
Subtract 4 from -49 to get -53.
-53-4x=5x-10+x-7
Use the distributive property to multiply 5 by x-2.
-53-4x=6x-10-7
Combine 5x and x to get 6x.
-53-4x=6x-17
Subtract 7 from -10 to get -17.
-53-4x-6x=-17
Subtract 6x from both sides.
-53-10x=-17
Combine -4x and -6x to get -10x.
-10x=-17+53
Add 53 to both sides.
-10x=36
Add -17 and 53 to get 36.
x=\frac{36}{-10}
Divide both sides by -10.
x=-\frac{18}{5}
Reduce the fraction \frac{36}{-10} to lowest terms by extracting and canceling out 2.