Solve for x
x = -\frac{18}{5} = -3\frac{3}{5} = -3.6
Graph
Share
Copied to clipboard
x^{2}-49-\left(x+2\right)^{2}=5\left(x-2\right)+x-7
Consider \left(x+7\right)\left(x-7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 7.
x^{2}-49-\left(x^{2}+4x+4\right)=5\left(x-2\right)+x-7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}-49-x^{2}-4x-4=5\left(x-2\right)+x-7
To find the opposite of x^{2}+4x+4, find the opposite of each term.
-49-4x-4=5\left(x-2\right)+x-7
Combine x^{2} and -x^{2} to get 0.
-53-4x=5\left(x-2\right)+x-7
Subtract 4 from -49 to get -53.
-53-4x=5x-10+x-7
Use the distributive property to multiply 5 by x-2.
-53-4x=6x-10-7
Combine 5x and x to get 6x.
-53-4x=6x-17
Subtract 7 from -10 to get -17.
-53-4x-6x=-17
Subtract 6x from both sides.
-53-10x=-17
Combine -4x and -6x to get -10x.
-10x=-17+53
Add 53 to both sides.
-10x=36
Add -17 and 53 to get 36.
x=\frac{36}{-10}
Divide both sides by -10.
x=-\frac{18}{5}
Reduce the fraction \frac{36}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}