Solve for x (complex solution)
x=3+\sqrt{5}i\approx 3+2.236067977i
x=-\sqrt{5}i+3\approx 3-2.236067977i
Graph
Share
Copied to clipboard
x^{2}-25-5\left(x-6\right)=x-9
Consider \left(x+5\right)\left(x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25-5x+30=x-9
Use the distributive property to multiply -5 by x-6.
x^{2}+5-5x=x-9
Add -25 and 30 to get 5.
x^{2}+5-5x-x=-9
Subtract x from both sides.
x^{2}+5-6x=-9
Combine -5x and -x to get -6x.
x^{2}+5-6x+9=0
Add 9 to both sides.
x^{2}+14-6x=0
Add 5 and 9 to get 14.
x^{2}-6x+14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 14}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 14}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-56}}{2}
Multiply -4 times 14.
x=\frac{-\left(-6\right)±\sqrt{-20}}{2}
Add 36 to -56.
x=\frac{-\left(-6\right)±2\sqrt{5}i}{2}
Take the square root of -20.
x=\frac{6±2\sqrt{5}i}{2}
The opposite of -6 is 6.
x=\frac{6+2\sqrt{5}i}{2}
Now solve the equation x=\frac{6±2\sqrt{5}i}{2} when ± is plus. Add 6 to 2i\sqrt{5}.
x=3+\sqrt{5}i
Divide 6+2i\sqrt{5} by 2.
x=\frac{-2\sqrt{5}i+6}{2}
Now solve the equation x=\frac{6±2\sqrt{5}i}{2} when ± is minus. Subtract 2i\sqrt{5} from 6.
x=-\sqrt{5}i+3
Divide 6-2i\sqrt{5} by 2.
x=3+\sqrt{5}i x=-\sqrt{5}i+3
The equation is now solved.
x^{2}-25-5\left(x-6\right)=x-9
Consider \left(x+5\right)\left(x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25-5x+30=x-9
Use the distributive property to multiply -5 by x-6.
x^{2}+5-5x=x-9
Add -25 and 30 to get 5.
x^{2}+5-5x-x=-9
Subtract x from both sides.
x^{2}+5-6x=-9
Combine -5x and -x to get -6x.
x^{2}-6x=-9-5
Subtract 5 from both sides.
x^{2}-6x=-14
Subtract 5 from -9 to get -14.
x^{2}-6x+\left(-3\right)^{2}=-14+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-14+9
Square -3.
x^{2}-6x+9=-5
Add -14 to 9.
\left(x-3\right)^{2}=-5
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x-3=\sqrt{5}i x-3=-\sqrt{5}i
Simplify.
x=3+\sqrt{5}i x=-\sqrt{5}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}