Solve for x
x = -\frac{57}{2} = -28\frac{1}{2} = -28.5
Graph
Share
Copied to clipboard
x^{2}-25-\left(x+3\right)\left(x^{2}-3x+9\right)=5-x\left(x^{2}-x-2\right)
Consider \left(x+5\right)\left(x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25-\left(x^{3}+27\right)=5-x\left(x^{2}-x-2\right)
Use the distributive property to multiply x+3 by x^{2}-3x+9 and combine like terms.
x^{2}-25-x^{3}-27=5-x\left(x^{2}-x-2\right)
To find the opposite of x^{3}+27, find the opposite of each term.
x^{2}-52-x^{3}=5-x\left(x^{2}-x-2\right)
Subtract 27 from -25 to get -52.
x^{2}-52-x^{3}=5-\left(x^{3}-x^{2}-2x\right)
Use the distributive property to multiply x by x^{2}-x-2.
x^{2}-52-x^{3}=5-x^{3}+x^{2}+2x
To find the opposite of x^{3}-x^{2}-2x, find the opposite of each term.
x^{2}-52-x^{3}+x^{3}=5+x^{2}+2x
Add x^{3} to both sides.
x^{2}-52=5+x^{2}+2x
Combine -x^{3} and x^{3} to get 0.
x^{2}-52-x^{2}=5+2x
Subtract x^{2} from both sides.
-52=5+2x
Combine x^{2} and -x^{2} to get 0.
5+2x=-52
Swap sides so that all variable terms are on the left hand side.
2x=-52-5
Subtract 5 from both sides.
2x=-57
Subtract 5 from -52 to get -57.
x=\frac{-57}{2}
Divide both sides by 2.
x=-\frac{57}{2}
Fraction \frac{-57}{2} can be rewritten as -\frac{57}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}