Evaluate
2x+5
Expand
2x+5
Graph
Share
Copied to clipboard
x+4+2\left(x+2\right)-\left(x-\left(-3\right)\right)
The opposite of -2 is 2.
x+4+2x+4-\left(x-\left(-3\right)\right)
Use the distributive property to multiply 2 by x+2.
3x+4+4-\left(x-\left(-3\right)\right)
Combine x and 2x to get 3x.
3x+8-\left(x-\left(-3\right)\right)
Add 4 and 4 to get 8.
3x+8-\left(x+3\right)
The opposite of -3 is 3.
3x+8-x-3
To find the opposite of x+3, find the opposite of each term.
2x+8-3
Combine 3x and -x to get 2x.
2x+5
Subtract 3 from 8 to get 5.
x+4+2\left(x+2\right)-\left(x-\left(-3\right)\right)
The opposite of -2 is 2.
x+4+2x+4-\left(x-\left(-3\right)\right)
Use the distributive property to multiply 2 by x+2.
3x+4+4-\left(x-\left(-3\right)\right)
Combine x and 2x to get 3x.
3x+8-\left(x-\left(-3\right)\right)
Add 4 and 4 to get 8.
3x+8-\left(x+3\right)
The opposite of -3 is 3.
3x+8-x-3
To find the opposite of x+3, find the opposite of each term.
2x+8-3
Combine 3x and -x to get 2x.
2x+5
Subtract 3 from 8 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}