Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+4\right)x=100
Combine x and x to get 2x.
2x^{2}+4x=100
Use the distributive property to multiply 2x+4 by x.
2x^{2}+4x-100=0
Subtract 100 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-100\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-100\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-100\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+800}}{2\times 2}
Multiply -8 times -100.
x=\frac{-4±\sqrt{816}}{2\times 2}
Add 16 to 800.
x=\frac{-4±4\sqrt{51}}{2\times 2}
Take the square root of 816.
x=\frac{-4±4\sqrt{51}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{51}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{51}}{4} when ± is plus. Add -4 to 4\sqrt{51}.
x=\sqrt{51}-1
Divide -4+4\sqrt{51} by 4.
x=\frac{-4\sqrt{51}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{51}}{4} when ± is minus. Subtract 4\sqrt{51} from -4.
x=-\sqrt{51}-1
Divide -4-4\sqrt{51} by 4.
x=\sqrt{51}-1 x=-\sqrt{51}-1
The equation is now solved.
\left(2x+4\right)x=100
Combine x and x to get 2x.
2x^{2}+4x=100
Use the distributive property to multiply 2x+4 by x.
\frac{2x^{2}+4x}{2}=\frac{100}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{100}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{100}{2}
Divide 4 by 2.
x^{2}+2x=50
Divide 100 by 2.
x^{2}+2x+1^{2}=50+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=50+1
Square 1.
x^{2}+2x+1=51
Add 50 to 1.
\left(x+1\right)^{2}=51
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{51}
Take the square root of both sides of the equation.
x+1=\sqrt{51} x+1=-\sqrt{51}
Simplify.
x=\sqrt{51}-1 x=-\sqrt{51}-1
Subtract 1 from both sides of the equation.
\left(2x+4\right)x=100
Combine x and x to get 2x.
2x^{2}+4x=100
Use the distributive property to multiply 2x+4 by x.
2x^{2}+4x-100=0
Subtract 100 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-100\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-100\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-100\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+800}}{2\times 2}
Multiply -8 times -100.
x=\frac{-4±\sqrt{816}}{2\times 2}
Add 16 to 800.
x=\frac{-4±4\sqrt{51}}{2\times 2}
Take the square root of 816.
x=\frac{-4±4\sqrt{51}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{51}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{51}}{4} when ± is plus. Add -4 to 4\sqrt{51}.
x=\sqrt{51}-1
Divide -4+4\sqrt{51} by 4.
x=\frac{-4\sqrt{51}-4}{4}
Now solve the equation x=\frac{-4±4\sqrt{51}}{4} when ± is minus. Subtract 4\sqrt{51} from -4.
x=-\sqrt{51}-1
Divide -4-4\sqrt{51} by 4.
x=\sqrt{51}-1 x=-\sqrt{51}-1
The equation is now solved.
\left(2x+4\right)x=100
Combine x and x to get 2x.
2x^{2}+4x=100
Use the distributive property to multiply 2x+4 by x.
\frac{2x^{2}+4x}{2}=\frac{100}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{100}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{100}{2}
Divide 4 by 2.
x^{2}+2x=50
Divide 100 by 2.
x^{2}+2x+1^{2}=50+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=50+1
Square 1.
x^{2}+2x+1=51
Add 50 to 1.
\left(x+1\right)^{2}=51
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{51}
Take the square root of both sides of the equation.
x+1=\sqrt{51} x+1=-\sqrt{51}
Simplify.
x=\sqrt{51}-1 x=-\sqrt{51}-1
Subtract 1 from both sides of the equation.