Solve for x (complex solution)
x=3+2\sqrt{5}i\approx 3+4.472135955i
x=-2\sqrt{5}i+3\approx 3-4.472135955i
Graph
Share
Copied to clipboard
x^{2}+2x-3=8\left(x-4\right)
Use the distributive property to multiply x+3 by x-1 and combine like terms.
x^{2}+2x-3=8x-32
Use the distributive property to multiply 8 by x-4.
x^{2}+2x-3-8x=-32
Subtract 8x from both sides.
x^{2}-6x-3=-32
Combine 2x and -8x to get -6x.
x^{2}-6x-3+32=0
Add 32 to both sides.
x^{2}-6x+29=0
Add -3 and 32 to get 29.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 29}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 29}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-116}}{2}
Multiply -4 times 29.
x=\frac{-\left(-6\right)±\sqrt{-80}}{2}
Add 36 to -116.
x=\frac{-\left(-6\right)±4\sqrt{5}i}{2}
Take the square root of -80.
x=\frac{6±4\sqrt{5}i}{2}
The opposite of -6 is 6.
x=\frac{6+4\sqrt{5}i}{2}
Now solve the equation x=\frac{6±4\sqrt{5}i}{2} when ± is plus. Add 6 to 4i\sqrt{5}.
x=3+2\sqrt{5}i
Divide 6+4i\sqrt{5} by 2.
x=\frac{-4\sqrt{5}i+6}{2}
Now solve the equation x=\frac{6±4\sqrt{5}i}{2} when ± is minus. Subtract 4i\sqrt{5} from 6.
x=-2\sqrt{5}i+3
Divide 6-4i\sqrt{5} by 2.
x=3+2\sqrt{5}i x=-2\sqrt{5}i+3
The equation is now solved.
x^{2}+2x-3=8\left(x-4\right)
Use the distributive property to multiply x+3 by x-1 and combine like terms.
x^{2}+2x-3=8x-32
Use the distributive property to multiply 8 by x-4.
x^{2}+2x-3-8x=-32
Subtract 8x from both sides.
x^{2}-6x-3=-32
Combine 2x and -8x to get -6x.
x^{2}-6x=-32+3
Add 3 to both sides.
x^{2}-6x=-29
Add -32 and 3 to get -29.
x^{2}-6x+\left(-3\right)^{2}=-29+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-29+9
Square -3.
x^{2}-6x+9=-20
Add -29 to 9.
\left(x-3\right)^{2}=-20
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-20}
Take the square root of both sides of the equation.
x-3=2\sqrt{5}i x-3=-2\sqrt{5}i
Simplify.
x=3+2\sqrt{5}i x=-2\sqrt{5}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}