Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x-3=8\left(x-4\right)
Use the distributive property to multiply x+3 by x-1 and combine like terms.
x^{2}+2x-3=8x-32
Use the distributive property to multiply 8 by x-4.
x^{2}+2x-3-8x=-32
Subtract 8x from both sides.
x^{2}-6x-3=-32
Combine 2x and -8x to get -6x.
x^{2}-6x-3+32=0
Add 32 to both sides.
x^{2}-6x+29=0
Add -3 and 32 to get 29.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 29}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 29}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-116}}{2}
Multiply -4 times 29.
x=\frac{-\left(-6\right)±\sqrt{-80}}{2}
Add 36 to -116.
x=\frac{-\left(-6\right)±4\sqrt{5}i}{2}
Take the square root of -80.
x=\frac{6±4\sqrt{5}i}{2}
The opposite of -6 is 6.
x=\frac{6+4\sqrt{5}i}{2}
Now solve the equation x=\frac{6±4\sqrt{5}i}{2} when ± is plus. Add 6 to 4i\sqrt{5}.
x=3+2\sqrt{5}i
Divide 6+4i\sqrt{5} by 2.
x=\frac{-4\sqrt{5}i+6}{2}
Now solve the equation x=\frac{6±4\sqrt{5}i}{2} when ± is minus. Subtract 4i\sqrt{5} from 6.
x=-2\sqrt{5}i+3
Divide 6-4i\sqrt{5} by 2.
x=3+2\sqrt{5}i x=-2\sqrt{5}i+3
The equation is now solved.
x^{2}+2x-3=8\left(x-4\right)
Use the distributive property to multiply x+3 by x-1 and combine like terms.
x^{2}+2x-3=8x-32
Use the distributive property to multiply 8 by x-4.
x^{2}+2x-3-8x=-32
Subtract 8x from both sides.
x^{2}-6x-3=-32
Combine 2x and -8x to get -6x.
x^{2}-6x=-32+3
Add 3 to both sides.
x^{2}-6x=-29
Add -32 and 3 to get -29.
x^{2}-6x+\left(-3\right)^{2}=-29+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-29+9
Square -3.
x^{2}-6x+9=-20
Add -29 to 9.
\left(x-3\right)^{2}=-20
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-20}
Take the square root of both sides of the equation.
x-3=2\sqrt{5}i x-3=-2\sqrt{5}i
Simplify.
x=3+2\sqrt{5}i x=-2\sqrt{5}i+3
Add 3 to both sides of the equation.