Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+1205x-11250=1200
Use the distributive property to multiply x+250 by 5x-45 and combine like terms.
5x^{2}+1205x-11250-1200=0
Subtract 1200 from both sides.
5x^{2}+1205x-12450=0
Subtract 1200 from -11250 to get -12450.
x=\frac{-1205±\sqrt{1205^{2}-4\times 5\left(-12450\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 1205 for b, and -12450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1205±\sqrt{1452025-4\times 5\left(-12450\right)}}{2\times 5}
Square 1205.
x=\frac{-1205±\sqrt{1452025-20\left(-12450\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-1205±\sqrt{1452025+249000}}{2\times 5}
Multiply -20 times -12450.
x=\frac{-1205±\sqrt{1701025}}{2\times 5}
Add 1452025 to 249000.
x=\frac{-1205±5\sqrt{68041}}{2\times 5}
Take the square root of 1701025.
x=\frac{-1205±5\sqrt{68041}}{10}
Multiply 2 times 5.
x=\frac{5\sqrt{68041}-1205}{10}
Now solve the equation x=\frac{-1205±5\sqrt{68041}}{10} when ± is plus. Add -1205 to 5\sqrt{68041}.
x=\frac{\sqrt{68041}-241}{2}
Divide -1205+5\sqrt{68041} by 10.
x=\frac{-5\sqrt{68041}-1205}{10}
Now solve the equation x=\frac{-1205±5\sqrt{68041}}{10} when ± is minus. Subtract 5\sqrt{68041} from -1205.
x=\frac{-\sqrt{68041}-241}{2}
Divide -1205-5\sqrt{68041} by 10.
x=\frac{\sqrt{68041}-241}{2} x=\frac{-\sqrt{68041}-241}{2}
The equation is now solved.
5x^{2}+1205x-11250=1200
Use the distributive property to multiply x+250 by 5x-45 and combine like terms.
5x^{2}+1205x=1200+11250
Add 11250 to both sides.
5x^{2}+1205x=12450
Add 1200 and 11250 to get 12450.
\frac{5x^{2}+1205x}{5}=\frac{12450}{5}
Divide both sides by 5.
x^{2}+\frac{1205}{5}x=\frac{12450}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+241x=\frac{12450}{5}
Divide 1205 by 5.
x^{2}+241x=2490
Divide 12450 by 5.
x^{2}+241x+\left(\frac{241}{2}\right)^{2}=2490+\left(\frac{241}{2}\right)^{2}
Divide 241, the coefficient of the x term, by 2 to get \frac{241}{2}. Then add the square of \frac{241}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+241x+\frac{58081}{4}=2490+\frac{58081}{4}
Square \frac{241}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+241x+\frac{58081}{4}=\frac{68041}{4}
Add 2490 to \frac{58081}{4}.
\left(x+\frac{241}{2}\right)^{2}=\frac{68041}{4}
Factor x^{2}+241x+\frac{58081}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{241}{2}\right)^{2}}=\sqrt{\frac{68041}{4}}
Take the square root of both sides of the equation.
x+\frac{241}{2}=\frac{\sqrt{68041}}{2} x+\frac{241}{2}=-\frac{\sqrt{68041}}{2}
Simplify.
x=\frac{\sqrt{68041}-241}{2} x=\frac{-\sqrt{68041}-241}{2}
Subtract \frac{241}{2} from both sides of the equation.