(x+25) \times 80 \% =14
Solve for x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Graph
Share
Copied to clipboard
\left(x+25\right)\times \frac{4}{5}=14
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
x\times \frac{4}{5}+25\times \frac{4}{5}=14
Use the distributive property to multiply x+25 by \frac{4}{5}.
x\times \frac{4}{5}+\frac{25\times 4}{5}=14
Express 25\times \frac{4}{5} as a single fraction.
x\times \frac{4}{5}+\frac{100}{5}=14
Multiply 25 and 4 to get 100.
x\times \frac{4}{5}+20=14
Divide 100 by 5 to get 20.
x\times \frac{4}{5}=14-20
Subtract 20 from both sides.
x\times \frac{4}{5}=-6
Subtract 20 from 14 to get -6.
x=-6\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
x=\frac{-6\times 5}{4}
Express -6\times \frac{5}{4} as a single fraction.
x=\frac{-30}{4}
Multiply -6 and 5 to get -30.
x=-\frac{15}{2}
Reduce the fraction \frac{-30}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}