Solve for x
x=-4
x=-2
Graph
Share
Copied to clipboard
x^{2}+8x+12=2x+4
Use the distributive property to multiply x+2 by x+6 and combine like terms.
x^{2}+8x+12-2x=4
Subtract 2x from both sides.
x^{2}+6x+12=4
Combine 8x and -2x to get 6x.
x^{2}+6x+12-4=0
Subtract 4 from both sides.
x^{2}+6x+8=0
Subtract 4 from 12 to get 8.
x=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 8}}{2}
Square 6.
x=\frac{-6±\sqrt{36-32}}{2}
Multiply -4 times 8.
x=\frac{-6±\sqrt{4}}{2}
Add 36 to -32.
x=\frac{-6±2}{2}
Take the square root of 4.
x=-\frac{4}{2}
Now solve the equation x=\frac{-6±2}{2} when ± is plus. Add -6 to 2.
x=-2
Divide -4 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-6±2}{2} when ± is minus. Subtract 2 from -6.
x=-4
Divide -8 by 2.
x=-2 x=-4
The equation is now solved.
x^{2}+8x+12=2x+4
Use the distributive property to multiply x+2 by x+6 and combine like terms.
x^{2}+8x+12-2x=4
Subtract 2x from both sides.
x^{2}+6x+12=4
Combine 8x and -2x to get 6x.
x^{2}+6x=4-12
Subtract 12 from both sides.
x^{2}+6x=-8
Subtract 12 from 4 to get -8.
x^{2}+6x+3^{2}=-8+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=-8+9
Square 3.
x^{2}+6x+9=1
Add -8 to 9.
\left(x+3\right)^{2}=1
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+3=1 x+3=-1
Simplify.
x=-2 x=-4
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}