Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\left(x+2\right)\left(2x-2\right)-\frac{x^{2}}{2}\right)-2\left(x-2\right)\left(x-6\right)=4
Multiply both sides of the equation by 2.
2\left(2x^{2}+2x-4-\frac{x^{2}}{2}\right)-2\left(x-2\right)\left(x-6\right)=4
Use the distributive property to multiply x+2 by 2x-2 and combine like terms.
2\left(\frac{3}{2}x^{2}+2x-4\right)-2\left(x-2\right)\left(x-6\right)=4
Combine 2x^{2} and -\frac{x^{2}}{2} to get \frac{3}{2}x^{2}.
3x^{2}+4x-8-2\left(x-2\right)\left(x-6\right)=4
Use the distributive property to multiply 2 by \frac{3}{2}x^{2}+2x-4.
3x^{2}+4x-8-2\left(x-2\right)\left(x-6\right)-4=0
Subtract 4 from both sides.
3x^{2}+4x-8+\left(-2x+4\right)\left(x-6\right)-4=0
Use the distributive property to multiply -2 by x-2.
3x^{2}+4x-8-2x^{2}+16x-24-4=0
Use the distributive property to multiply -2x+4 by x-6 and combine like terms.
x^{2}+4x-8+16x-24-4=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+20x-8-24-4=0
Combine 4x and 16x to get 20x.
x^{2}+20x-32-4=0
Subtract 24 from -8 to get -32.
x^{2}+20x-36=0
Subtract 4 from -32 to get -36.
x=\frac{-20±\sqrt{20^{2}-4\left(-36\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-36\right)}}{2}
Square 20.
x=\frac{-20±\sqrt{400+144}}{2}
Multiply -4 times -36.
x=\frac{-20±\sqrt{544}}{2}
Add 400 to 144.
x=\frac{-20±4\sqrt{34}}{2}
Take the square root of 544.
x=\frac{4\sqrt{34}-20}{2}
Now solve the equation x=\frac{-20±4\sqrt{34}}{2} when ± is plus. Add -20 to 4\sqrt{34}.
x=2\sqrt{34}-10
Divide -20+4\sqrt{34} by 2.
x=\frac{-4\sqrt{34}-20}{2}
Now solve the equation x=\frac{-20±4\sqrt{34}}{2} when ± is minus. Subtract 4\sqrt{34} from -20.
x=-2\sqrt{34}-10
Divide -20-4\sqrt{34} by 2.
x=2\sqrt{34}-10 x=-2\sqrt{34}-10
The equation is now solved.
2\left(\left(x+2\right)\left(2x-2\right)-\frac{x^{2}}{2}\right)-2\left(x-2\right)\left(x-6\right)=4
Multiply both sides of the equation by 2.
2\left(2x^{2}+2x-4-\frac{x^{2}}{2}\right)-2\left(x-2\right)\left(x-6\right)=4
Use the distributive property to multiply x+2 by 2x-2 and combine like terms.
2\left(\frac{3}{2}x^{2}+2x-4\right)-2\left(x-2\right)\left(x-6\right)=4
Combine 2x^{2} and -\frac{x^{2}}{2} to get \frac{3}{2}x^{2}.
3x^{2}+4x-8-2\left(x-2\right)\left(x-6\right)=4
Use the distributive property to multiply 2 by \frac{3}{2}x^{2}+2x-4.
3x^{2}+4x-8+\left(-2x+4\right)\left(x-6\right)=4
Use the distributive property to multiply -2 by x-2.
3x^{2}+4x-8-2x^{2}+16x-24=4
Use the distributive property to multiply -2x+4 by x-6 and combine like terms.
x^{2}+4x-8+16x-24=4
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+20x-8-24=4
Combine 4x and 16x to get 20x.
x^{2}+20x-32=4
Subtract 24 from -8 to get -32.
x^{2}+20x=4+32
Add 32 to both sides.
x^{2}+20x=36
Add 4 and 32 to get 36.
x^{2}+20x+10^{2}=36+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20x+100=36+100
Square 10.
x^{2}+20x+100=136
Add 36 to 100.
\left(x+10\right)^{2}=136
Factor x^{2}+20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{136}
Take the square root of both sides of the equation.
x+10=2\sqrt{34} x+10=-2\sqrt{34}
Simplify.
x=2\sqrt{34}-10 x=-2\sqrt{34}-10
Subtract 10 from both sides of the equation.