Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\sqrt{x-6}+2\sqrt{x-6}=0
Use the distributive property to multiply x+2 by \sqrt{x-6}.
x\sqrt{x-6}=-2\sqrt{x-6}
Subtract 2\sqrt{x-6} from both sides of the equation.
\left(x\sqrt{x-6}\right)^{2}=\left(-2\sqrt{x-6}\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{x-6}\right)^{2}=\left(-2\sqrt{x-6}\right)^{2}
Expand \left(x\sqrt{x-6}\right)^{2}.
x^{2}\left(x-6\right)=\left(-2\sqrt{x-6}\right)^{2}
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x^{3}-6x^{2}=\left(-2\sqrt{x-6}\right)^{2}
Use the distributive property to multiply x^{2} by x-6.
x^{3}-6x^{2}=\left(-2\right)^{2}\left(\sqrt{x-6}\right)^{2}
Expand \left(-2\sqrt{x-6}\right)^{2}.
x^{3}-6x^{2}=4\left(\sqrt{x-6}\right)^{2}
Calculate -2 to the power of 2 and get 4.
x^{3}-6x^{2}=4\left(x-6\right)
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x^{3}-6x^{2}=4x-24
Use the distributive property to multiply 4 by x-6.
x^{3}-6x^{2}-4x=-24
Subtract 4x from both sides.
x^{3}-6x^{2}-4x+24=0
Add 24 to both sides.
±24,±12,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 24 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-4x-12=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-6x^{2}-4x+24 by x-2 to get x^{2}-4x-12. Solve the equation where the result equals to 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -4 for b, and -12 for c in the quadratic formula.
x=\frac{4±8}{2}
Do the calculations.
x=-2 x=6
Solve the equation x^{2}-4x-12=0 when ± is plus and when ± is minus.
x=2 x=-2 x=6
List all found solutions.
\left(2+2\right)\sqrt{2-6}=0
Substitute 2 for x in the equation \left(x+2\right)\sqrt{x-6}=0.
8i=0
Simplify. The value x=2 does not satisfy the equation.
\left(-2+2\right)\sqrt{-2-6}=0
Substitute -2 for x in the equation \left(x+2\right)\sqrt{x-6}=0.
0=0
Simplify. The value x=-2 satisfies the equation.
\left(6+2\right)\sqrt{6-6}=0
Substitute 6 for x in the equation \left(x+2\right)\sqrt{x-6}=0.
0=0
Simplify. The value x=6 satisfies the equation.
x=-2 x=6
List all solutions of \sqrt{x-6}x=-2\sqrt{x-6}.
x\sqrt{x-6}+2\sqrt{x-6}=0
Use the distributive property to multiply x+2 by \sqrt{x-6}.
x\sqrt{x-6}=-2\sqrt{x-6}
Subtract 2\sqrt{x-6} from both sides of the equation.
\left(x\sqrt{x-6}\right)^{2}=\left(-2\sqrt{x-6}\right)^{2}
Square both sides of the equation.
x^{2}\left(\sqrt{x-6}\right)^{2}=\left(-2\sqrt{x-6}\right)^{2}
Expand \left(x\sqrt{x-6}\right)^{2}.
x^{2}\left(x-6\right)=\left(-2\sqrt{x-6}\right)^{2}
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x^{3}-6x^{2}=\left(-2\sqrt{x-6}\right)^{2}
Use the distributive property to multiply x^{2} by x-6.
x^{3}-6x^{2}=\left(-2\right)^{2}\left(\sqrt{x-6}\right)^{2}
Expand \left(-2\sqrt{x-6}\right)^{2}.
x^{3}-6x^{2}=4\left(\sqrt{x-6}\right)^{2}
Calculate -2 to the power of 2 and get 4.
x^{3}-6x^{2}=4\left(x-6\right)
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x^{3}-6x^{2}=4x-24
Use the distributive property to multiply 4 by x-6.
x^{3}-6x^{2}-4x=-24
Subtract 4x from both sides.
x^{3}-6x^{2}-4x+24=0
Add 24 to both sides.
±24,±12,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 24 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-4x-12=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-6x^{2}-4x+24 by x-2 to get x^{2}-4x-12. Solve the equation where the result equals to 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -4 for b, and -12 for c in the quadratic formula.
x=\frac{4±8}{2}
Do the calculations.
x=-2 x=6
Solve the equation x^{2}-4x-12=0 when ± is plus and when ± is minus.
x=2 x=-2 x=6
List all found solutions.
\left(2+2\right)\sqrt{2-6}=0
Substitute 2 for x in the equation \left(x+2\right)\sqrt{x-6}=0. The expression \sqrt{2-6} is undefined because the radicand cannot be negative.
\left(-2+2\right)\sqrt{-2-6}=0
Substitute -2 for x in the equation \left(x+2\right)\sqrt{x-6}=0. The expression \sqrt{-2-6} is undefined because the radicand cannot be negative.
\left(6+2\right)\sqrt{6-6}=0
Substitute 6 for x in the equation \left(x+2\right)\sqrt{x-6}=0.
0=0
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x-6}x=-2\sqrt{x-6} has a unique solution.