Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

x+2i=\frac{4+3i}{2-i}
Divide both sides by 2-i.
x+2i=\frac{\left(4+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{4+3i}{2-i} by the complex conjugate of the denominator, 2+i.
x+2i=\frac{\left(4+3i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x+2i=\frac{\left(4+3i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
x+2i=\frac{4\times 2+4i+3i\times 2+3i^{2}}{5}
Multiply complex numbers 4+3i and 2+i like you multiply binomials.
x+2i=\frac{4\times 2+4i+3i\times 2+3\left(-1\right)}{5}
By definition, i^{2} is -1.
x+2i=\frac{8+4i+6i-3}{5}
Do the multiplications in 4\times 2+4i+3i\times 2+3\left(-1\right).
x+2i=\frac{8-3+\left(4+6\right)i}{5}
Combine the real and imaginary parts in 8+4i+6i-3.
x+2i=\frac{5+10i}{5}
Do the additions in 8-3+\left(4+6\right)i.
x+2i=1+2i
Divide 5+10i by 5 to get 1+2i.
x=1+2i-2i
Subtract 2i from both sides.
x=1+\left(2-2\right)i
Combine the real and imaginary parts in numbers 1+2i and -2i.
x=1
Add 2 to -2.