Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+19x=8100
Use the distributive property to multiply x+19 by x.
x^{2}+19x-8100=0
Subtract 8100 from both sides.
x=\frac{-19±\sqrt{19^{2}-4\left(-8100\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and -8100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-8100\right)}}{2}
Square 19.
x=\frac{-19±\sqrt{361+32400}}{2}
Multiply -4 times -8100.
x=\frac{-19±\sqrt{32761}}{2}
Add 361 to 32400.
x=\frac{-19±181}{2}
Take the square root of 32761.
x=\frac{162}{2}
Now solve the equation x=\frac{-19±181}{2} when ± is plus. Add -19 to 181.
x=81
Divide 162 by 2.
x=-\frac{200}{2}
Now solve the equation x=\frac{-19±181}{2} when ± is minus. Subtract 181 from -19.
x=-100
Divide -200 by 2.
x=81 x=-100
The equation is now solved.
x^{2}+19x=8100
Use the distributive property to multiply x+19 by x.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=8100+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+19x+\frac{361}{4}=8100+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+19x+\frac{361}{4}=\frac{32761}{4}
Add 8100 to \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=\frac{32761}{4}
Factor x^{2}+19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{\frac{32761}{4}}
Take the square root of both sides of the equation.
x+\frac{19}{2}=\frac{181}{2} x+\frac{19}{2}=-\frac{181}{2}
Simplify.
x=81 x=-100
Subtract \frac{19}{2} from both sides of the equation.