Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+22x+120=3x
Use the distributive property to multiply x+10 by x+12 and combine like terms.
x^{2}+22x+120-3x=0
Subtract 3x from both sides.
x^{2}+19x+120=0
Combine 22x and -3x to get 19x.
x=\frac{-19±\sqrt{19^{2}-4\times 120}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 120}}{2}
Square 19.
x=\frac{-19±\sqrt{361-480}}{2}
Multiply -4 times 120.
x=\frac{-19±\sqrt{-119}}{2}
Add 361 to -480.
x=\frac{-19±\sqrt{119}i}{2}
Take the square root of -119.
x=\frac{-19+\sqrt{119}i}{2}
Now solve the equation x=\frac{-19±\sqrt{119}i}{2} when ± is plus. Add -19 to i\sqrt{119}.
x=\frac{-\sqrt{119}i-19}{2}
Now solve the equation x=\frac{-19±\sqrt{119}i}{2} when ± is minus. Subtract i\sqrt{119} from -19.
x=\frac{-19+\sqrt{119}i}{2} x=\frac{-\sqrt{119}i-19}{2}
The equation is now solved.
x^{2}+22x+120=3x
Use the distributive property to multiply x+10 by x+12 and combine like terms.
x^{2}+22x+120-3x=0
Subtract 3x from both sides.
x^{2}+19x+120=0
Combine 22x and -3x to get 19x.
x^{2}+19x=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=-120+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+19x+\frac{361}{4}=-120+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+19x+\frac{361}{4}=-\frac{119}{4}
Add -120 to \frac{361}{4}.
\left(x+\frac{19}{2}\right)^{2}=-\frac{119}{4}
Factor x^{2}+19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
Take the square root of both sides of the equation.
x+\frac{19}{2}=\frac{\sqrt{119}i}{2} x+\frac{19}{2}=-\frac{\sqrt{119}i}{2}
Simplify.
x=\frac{-19+\sqrt{119}i}{2} x=\frac{-\sqrt{119}i-19}{2}
Subtract \frac{19}{2} from both sides of the equation.