Evaluate
0
Factor
0
Graph
Share
Copied to clipboard
\left(x+1+\frac{\sqrt{7}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\right)\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Rationalize the denominator of \frac{\sqrt{7}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(x+1+\frac{\sqrt{7}\sqrt{2}}{2\times 2}\right)\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
The square of \sqrt{2} is 2.
\left(x+1+\frac{\sqrt{14}}{2\times 2}\right)\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\left(x+1+\frac{\sqrt{14}}{4}\right)\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Multiply 2 and 2 to get 4.
\left(\frac{4\left(x+1\right)}{4}+\frac{\sqrt{14}}{4}\right)\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x+1 times \frac{4}{4}.
\frac{4\left(x+1\right)+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Since \frac{4\left(x+1\right)}{4} and \frac{\sqrt{14}}{4} have the same denominator, add them by adding their numerators.
\frac{4x+4+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{7}}{2\sqrt{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Do the multiplications in 4\left(x+1\right)+\sqrt{14}.
\frac{4x+4+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{7}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Rationalize the denominator of \frac{\sqrt{7}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4x+4+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{7}\sqrt{2}}{2\times 2}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
The square of \sqrt{2} is 2.
\frac{4x+4+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{14}}{2\times 2}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{4x+4+\sqrt{14}}{4}\left(x+1-\frac{\sqrt{14}}{4}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
Multiply 2 and 2 to get 4.
\frac{4x+4+\sqrt{14}}{4}\left(\frac{4\left(x+1\right)}{4}-\frac{\sqrt{14}}{4}\right)-\left(x^{2}+2x+\frac{1}{8}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x+1 times \frac{4}{4}.
\frac{4x+4+\sqrt{14}}{4}\times \frac{4\left(x+1\right)-\sqrt{14}}{4}-\left(x^{2}+2x+\frac{1}{8}\right)
Since \frac{4\left(x+1\right)}{4} and \frac{\sqrt{14}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4x+4+\sqrt{14}}{4}\times \frac{4x+4-\sqrt{14}}{4}-\left(x^{2}+2x+\frac{1}{8}\right)
Do the multiplications in 4\left(x+1\right)-\sqrt{14}.
\frac{\left(4x+4+\sqrt{14}\right)\left(4x+4-\sqrt{14}\right)}{4\times 4}-\left(x^{2}+2x+\frac{1}{8}\right)
Multiply \frac{4x+4+\sqrt{14}}{4} times \frac{4x+4-\sqrt{14}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(4x+4+\sqrt{14}\right)\left(4x+4-\sqrt{14}\right)}{16}-\left(x^{2}+2x+\frac{1}{8}\right)
Multiply 4 and 4 to get 16.
\frac{16x^{2}+32x+16-\left(\sqrt{14}\right)^{2}}{16}-\left(x^{2}+2x+\frac{1}{8}\right)
Use the distributive property to multiply 4x+4+\sqrt{14} by 4x+4-\sqrt{14} and combine like terms.
\frac{16x^{2}+32x+16-14}{16}-\left(x^{2}+2x+\frac{1}{8}\right)
The square of \sqrt{14} is 14.
\frac{16x^{2}+32x+2}{16}-\left(x^{2}+2x+\frac{1}{8}\right)
Subtract 14 from 16 to get 2.
\frac{16x^{2}+32x+2}{16}-x^{2}-2x-\frac{1}{8}
To find the opposite of x^{2}+2x+\frac{1}{8}, find the opposite of each term.
\frac{16x^{2}+32x+2}{16}-x^{2}-2x-\frac{2}{16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 8 is 16. Multiply \frac{1}{8} times \frac{2}{2}.
\frac{16x^{2}+32x+2-2}{16}-x^{2}-2x
Since \frac{16x^{2}+32x+2}{16} and \frac{2}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{16x^{2}+32x}{16}-x^{2}-2x
Combine like terms in 16x^{2}+32x+2-2.
2x+x^{2}-x^{2}-2x
Divide each term of 16x^{2}+32x by 16 to get 2x+x^{2}.
2x-2x
Combine x^{2} and -x^{2} to get 0.
0
Combine 2x and -2x to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}