Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+0.03x=3.7\times 10^{-18}
Use the distributive property to multiply x+0.03 by x.
x^{2}+0.03x=3.7\times \frac{1}{1000000000000000000}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
x^{2}+0.03x=\frac{37}{10000000000000000000}
Multiply 3.7 and \frac{1}{1000000000000000000} to get \frac{37}{10000000000000000000}.
x^{2}+0.03x-\frac{37}{10000000000000000000}=0
Subtract \frac{37}{10000000000000000000} from both sides.
x=\frac{-0.03±\sqrt{0.03^{2}-4\left(-\frac{37}{10000000000000000000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.03 for b, and -\frac{37}{10000000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.03±\sqrt{0.0009-4\left(-\frac{37}{10000000000000000000}\right)}}{2}
Square 0.03 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.03±\sqrt{0.0009+\frac{37}{2500000000000000000}}}{2}
Multiply -4 times -\frac{37}{10000000000000000000}.
x=\frac{-0.03±\sqrt{\frac{2250000000000037}{2500000000000000000}}}{2}
Add 0.0009 to \frac{37}{2500000000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2}
Take the square root of \frac{2250000000000037}{2500000000000000000}.
x=\frac{\frac{\sqrt{22500000000000370}}{5000000000}-\frac{3}{100}}{2}
Now solve the equation x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2} when ± is plus. Add -0.03 to \frac{\sqrt{22500000000000370}}{5000000000}.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Divide -\frac{3}{100}+\frac{\sqrt{22500000000000370}}{5000000000} by 2.
x=\frac{-\frac{\sqrt{22500000000000370}}{5000000000}-\frac{3}{100}}{2}
Now solve the equation x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2} when ± is minus. Subtract \frac{\sqrt{22500000000000370}}{5000000000} from -0.03.
x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Divide -\frac{3}{100}-\frac{\sqrt{22500000000000370}}{5000000000} by 2.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200} x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
The equation is now solved.
x^{2}+0.03x=3.7\times 10^{-18}
Use the distributive property to multiply x+0.03 by x.
x^{2}+0.03x=3.7\times \frac{1}{1000000000000000000}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
x^{2}+0.03x=\frac{37}{10000000000000000000}
Multiply 3.7 and \frac{1}{1000000000000000000} to get \frac{37}{10000000000000000000}.
x^{2}+0.03x+0.015^{2}=\frac{37}{10000000000000000000}+0.015^{2}
Divide 0.03, the coefficient of the x term, by 2 to get 0.015. Then add the square of 0.015 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.03x+0.000225=\frac{37}{10000000000000000000}+0.000225
Square 0.015 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.03x+0.000225=\frac{2250000000000037}{10000000000000000000}
Add \frac{37}{10000000000000000000} to 0.000225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.015\right)^{2}=\frac{2250000000000037}{10000000000000000000}
Factor x^{2}+0.03x+0.000225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.015\right)^{2}}=\sqrt{\frac{2250000000000037}{10000000000000000000}}
Take the square root of both sides of the equation.
x+0.015=\frac{\sqrt{22500000000000370}}{10000000000} x+0.015=-\frac{\sqrt{22500000000000370}}{10000000000}
Simplify.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200} x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Subtract 0.015 from both sides of the equation.