Solve for x
x=\frac{\sqrt{22500000000000370}}{10000000000}-0.015\approx 1.231653668 \cdot 10^{-16}
x=-\frac{\sqrt{22500000000000370}}{10000000000}-0.015\approx -0.03
Graph
Share
Copied to clipboard
x^{2}+0.03x=3.7\times 10^{-18}
Use the distributive property to multiply x+0.03 by x.
x^{2}+0.03x=3.7\times \frac{1}{1000000000000000000}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
x^{2}+0.03x=\frac{37}{10000000000000000000}
Multiply 3.7 and \frac{1}{1000000000000000000} to get \frac{37}{10000000000000000000}.
x^{2}+0.03x-\frac{37}{10000000000000000000}=0
Subtract \frac{37}{10000000000000000000} from both sides.
x=\frac{-0.03±\sqrt{0.03^{2}-4\left(-\frac{37}{10000000000000000000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.03 for b, and -\frac{37}{10000000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.03±\sqrt{0.0009-4\left(-\frac{37}{10000000000000000000}\right)}}{2}
Square 0.03 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.03±\sqrt{0.0009+\frac{37}{2500000000000000000}}}{2}
Multiply -4 times -\frac{37}{10000000000000000000}.
x=\frac{-0.03±\sqrt{\frac{2250000000000037}{2500000000000000000}}}{2}
Add 0.0009 to \frac{37}{2500000000000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2}
Take the square root of \frac{2250000000000037}{2500000000000000000}.
x=\frac{\frac{\sqrt{22500000000000370}}{5000000000}-\frac{3}{100}}{2}
Now solve the equation x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2} when ± is plus. Add -0.03 to \frac{\sqrt{22500000000000370}}{5000000000}.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Divide -\frac{3}{100}+\frac{\sqrt{22500000000000370}}{5000000000} by 2.
x=\frac{-\frac{\sqrt{22500000000000370}}{5000000000}-\frac{3}{100}}{2}
Now solve the equation x=\frac{-0.03±\frac{\sqrt{22500000000000370}}{5000000000}}{2} when ± is minus. Subtract \frac{\sqrt{22500000000000370}}{5000000000} from -0.03.
x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Divide -\frac{3}{100}-\frac{\sqrt{22500000000000370}}{5000000000} by 2.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200} x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
The equation is now solved.
x^{2}+0.03x=3.7\times 10^{-18}
Use the distributive property to multiply x+0.03 by x.
x^{2}+0.03x=3.7\times \frac{1}{1000000000000000000}
Calculate 10 to the power of -18 and get \frac{1}{1000000000000000000}.
x^{2}+0.03x=\frac{37}{10000000000000000000}
Multiply 3.7 and \frac{1}{1000000000000000000} to get \frac{37}{10000000000000000000}.
x^{2}+0.03x+0.015^{2}=\frac{37}{10000000000000000000}+0.015^{2}
Divide 0.03, the coefficient of the x term, by 2 to get 0.015. Then add the square of 0.015 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.03x+0.000225=\frac{37}{10000000000000000000}+0.000225
Square 0.015 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.03x+0.000225=\frac{2250000000000037}{10000000000000000000}
Add \frac{37}{10000000000000000000} to 0.000225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.015\right)^{2}=\frac{2250000000000037}{10000000000000000000}
Factor x^{2}+0.03x+0.000225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.015\right)^{2}}=\sqrt{\frac{2250000000000037}{10000000000000000000}}
Take the square root of both sides of the equation.
x+0.015=\frac{\sqrt{22500000000000370}}{10000000000} x+0.015=-\frac{\sqrt{22500000000000370}}{10000000000}
Simplify.
x=\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200} x=-\frac{\sqrt{22500000000000370}}{10000000000}-\frac{3}{200}
Subtract 0.015 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}