Solve for x
x=10
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
x\left(35-2x\right)=150
Anything plus zero gives itself.
35x-2x^{2}=150
Use the distributive property to multiply x by 35-2x.
35x-2x^{2}-150=0
Subtract 150 from both sides.
-2x^{2}+35x-150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{35^{2}-4\left(-2\right)\left(-150\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 35 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\left(-2\right)\left(-150\right)}}{2\left(-2\right)}
Square 35.
x=\frac{-35±\sqrt{1225+8\left(-150\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-35±\sqrt{1225-1200}}{2\left(-2\right)}
Multiply 8 times -150.
x=\frac{-35±\sqrt{25}}{2\left(-2\right)}
Add 1225 to -1200.
x=\frac{-35±5}{2\left(-2\right)}
Take the square root of 25.
x=\frac{-35±5}{-4}
Multiply 2 times -2.
x=-\frac{30}{-4}
Now solve the equation x=\frac{-35±5}{-4} when ± is plus. Add -35 to 5.
x=\frac{15}{2}
Reduce the fraction \frac{-30}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{40}{-4}
Now solve the equation x=\frac{-35±5}{-4} when ± is minus. Subtract 5 from -35.
x=10
Divide -40 by -4.
x=\frac{15}{2} x=10
The equation is now solved.
x\left(35-2x\right)=150
Anything plus zero gives itself.
35x-2x^{2}=150
Use the distributive property to multiply x by 35-2x.
-2x^{2}+35x=150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+35x}{-2}=\frac{150}{-2}
Divide both sides by -2.
x^{2}+\frac{35}{-2}x=\frac{150}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{35}{2}x=\frac{150}{-2}
Divide 35 by -2.
x^{2}-\frac{35}{2}x=-75
Divide 150 by -2.
x^{2}-\frac{35}{2}x+\left(-\frac{35}{4}\right)^{2}=-75+\left(-\frac{35}{4}\right)^{2}
Divide -\frac{35}{2}, the coefficient of the x term, by 2 to get -\frac{35}{4}. Then add the square of -\frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=-75+\frac{1225}{16}
Square -\frac{35}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=\frac{25}{16}
Add -75 to \frac{1225}{16}.
\left(x-\frac{35}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{35}{2}x+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{35}{4}=\frac{5}{4} x-\frac{35}{4}=-\frac{5}{4}
Simplify.
x=10 x=\frac{15}{2}
Add \frac{35}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}