Evaluate
\frac{\left(2x+1\right)\left(2y-15x\right)}{2}
Expand
2xy-15x^{2}-\frac{15x}{2}+y
Share
Copied to clipboard
2xy-15x^{2}+\frac{1}{2}\times 2y+\frac{1}{2}\left(-15\right)x
Apply the distributive property by multiplying each term of x+\frac{1}{2} by each term of 2y-15x.
2xy-15x^{2}+y+\frac{1}{2}\left(-15\right)x
Cancel out 2 and 2.
2xy-15x^{2}+y+\frac{-15}{2}x
Multiply \frac{1}{2} and -15 to get \frac{-15}{2}.
2xy-15x^{2}+y-\frac{15}{2}x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
2xy-15x^{2}+\frac{1}{2}\times 2y+\frac{1}{2}\left(-15\right)x
Apply the distributive property by multiplying each term of x+\frac{1}{2} by each term of 2y-15x.
2xy-15x^{2}+y+\frac{1}{2}\left(-15\right)x
Cancel out 2 and 2.
2xy-15x^{2}+y+\frac{-15}{2}x
Multiply \frac{1}{2} and -15 to get \frac{-15}{2}.
2xy-15x^{2}+y-\frac{15}{2}x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}