Solve for x
x=\frac{3}{5}=0.6
x=0
Graph
Share
Copied to clipboard
30x^{2}-3x\times 6=0
Use the distributive property to multiply x\times 6 by 5x-3.
30x^{2}-18x=0
Multiply -3 and 6 to get -18.
x\left(30x-18\right)=0
Factor out x.
x=0 x=\frac{3}{5}
To find equation solutions, solve x=0 and 30x-18=0.
30x^{2}-3x\times 6=0
Use the distributive property to multiply x\times 6 by 5x-3.
30x^{2}-18x=0
Multiply -3 and 6 to get -18.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, -18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±18}{2\times 30}
Take the square root of \left(-18\right)^{2}.
x=\frac{18±18}{2\times 30}
The opposite of -18 is 18.
x=\frac{18±18}{60}
Multiply 2 times 30.
x=\frac{36}{60}
Now solve the equation x=\frac{18±18}{60} when ± is plus. Add 18 to 18.
x=\frac{3}{5}
Reduce the fraction \frac{36}{60} to lowest terms by extracting and canceling out 12.
x=\frac{0}{60}
Now solve the equation x=\frac{18±18}{60} when ± is minus. Subtract 18 from 18.
x=0
Divide 0 by 60.
x=\frac{3}{5} x=0
The equation is now solved.
30x^{2}-3x\times 6=0
Use the distributive property to multiply x\times 6 by 5x-3.
30x^{2}-18x=0
Multiply -3 and 6 to get -18.
\frac{30x^{2}-18x}{30}=\frac{0}{30}
Divide both sides by 30.
x^{2}+\left(-\frac{18}{30}\right)x=\frac{0}{30}
Dividing by 30 undoes the multiplication by 30.
x^{2}-\frac{3}{5}x=\frac{0}{30}
Reduce the fraction \frac{-18}{30} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{3}{5}x=0
Divide 0 by 30.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{3}{10}\right)^{2}=\frac{9}{100}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{9}{100}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{3}{10} x-\frac{3}{10}=-\frac{3}{10}
Simplify.
x=\frac{3}{5} x=0
Add \frac{3}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}