Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x\left(1+\frac{3}{10}\right)+\left(250-x\right)\left(1+\frac{20}{100}\right)\right)\times 0.9-250=33.5
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
\left(x\left(\frac{10}{10}+\frac{3}{10}\right)+\left(250-x\right)\left(1+\frac{20}{100}\right)\right)\times 0.9-250=33.5
Convert 1 to fraction \frac{10}{10}.
\left(x\times \frac{10+3}{10}+\left(250-x\right)\left(1+\frac{20}{100}\right)\right)\times 0.9-250=33.5
Since \frac{10}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\left(x\times \frac{13}{10}+\left(250-x\right)\left(1+\frac{20}{100}\right)\right)\times 0.9-250=33.5
Add 10 and 3 to get 13.
\left(x\times \frac{13}{10}+\left(250-x\right)\left(1+\frac{1}{5}\right)\right)\times 0.9-250=33.5
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\left(x\times \frac{13}{10}+\left(250-x\right)\left(\frac{5}{5}+\frac{1}{5}\right)\right)\times 0.9-250=33.5
Convert 1 to fraction \frac{5}{5}.
\left(x\times \frac{13}{10}+\left(250-x\right)\times \frac{5+1}{5}\right)\times 0.9-250=33.5
Since \frac{5}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\left(x\times \frac{13}{10}+\left(250-x\right)\times \frac{6}{5}\right)\times 0.9-250=33.5
Add 5 and 1 to get 6.
\left(x\times \frac{13}{10}+250\times \frac{6}{5}-x\times \frac{6}{5}\right)\times 0.9-250=33.5
Use the distributive property to multiply 250-x by \frac{6}{5}.
\left(x\times \frac{13}{10}+\frac{250\times 6}{5}-x\times \frac{6}{5}\right)\times 0.9-250=33.5
Express 250\times \frac{6}{5} as a single fraction.
\left(x\times \frac{13}{10}+\frac{1500}{5}-x\times \frac{6}{5}\right)\times 0.9-250=33.5
Multiply 250 and 6 to get 1500.
\left(x\times \frac{13}{10}+300-x\times \frac{6}{5}\right)\times 0.9-250=33.5
Divide 1500 by 5 to get 300.
\left(x\times \frac{13}{10}+300-\frac{6}{5}x\right)\times 0.9-250=33.5
Multiply -1 and \frac{6}{5} to get -\frac{6}{5}.
\left(\frac{1}{10}x+300\right)\times 0.9-250=33.5
Combine x\times \frac{13}{10} and -\frac{6}{5}x to get \frac{1}{10}x.
\frac{1}{10}x\times 0.9+270-250=33.5
Use the distributive property to multiply \frac{1}{10}x+300 by 0.9.
\frac{1}{10}x\times \frac{9}{10}+270-250=33.5
Convert decimal number 0.9 to fraction \frac{9}{10}.
\frac{1\times 9}{10\times 10}x+270-250=33.5
Multiply \frac{1}{10} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{100}x+270-250=33.5
Do the multiplications in the fraction \frac{1\times 9}{10\times 10}.
\frac{9}{100}x+20=33.5
Subtract 250 from 270 to get 20.
\frac{9}{100}x=33.5-20
Subtract 20 from both sides.
\frac{9}{100}x=13.5
Subtract 20 from 33.5 to get 13.5.
x=13.5\times \frac{100}{9}
Multiply both sides by \frac{100}{9}, the reciprocal of \frac{9}{100}.
x=\frac{27}{2}\times \frac{100}{9}
Convert decimal number 13.5 to fraction \frac{135}{10}. Reduce the fraction \frac{135}{10} to lowest terms by extracting and canceling out 5.
x=\frac{27\times 100}{2\times 9}
Multiply \frac{27}{2} times \frac{100}{9} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2700}{18}
Do the multiplications in the fraction \frac{27\times 100}{2\times 9}.
x=150
Divide 2700 by 18 to get 150.