Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-\left(2b\right)^{2}-\left(3a-2b\right)\left(3a+2b\right)
Consider \left(a+2b\right)\left(a-2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-2^{2}b^{2}-\left(3a-2b\right)\left(3a+2b\right)
Expand \left(2b\right)^{2}.
a^{2}-4b^{2}-\left(3a-2b\right)\left(3a+2b\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4b^{2}-\left(\left(3a\right)^{2}-\left(2b\right)^{2}\right)
Consider \left(3a-2b\right)\left(3a+2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4b^{2}-\left(3^{2}a^{2}-\left(2b\right)^{2}\right)
Expand \left(3a\right)^{2}.
a^{2}-4b^{2}-\left(9a^{2}-\left(2b\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
a^{2}-4b^{2}-\left(9a^{2}-2^{2}b^{2}\right)
Expand \left(2b\right)^{2}.
a^{2}-4b^{2}-\left(9a^{2}-4b^{2}\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4b^{2}-9a^{2}-\left(-4b^{2}\right)
To find the opposite of 9a^{2}-4b^{2}, find the opposite of each term.
a^{2}-4b^{2}-9a^{2}+4b^{2}
The opposite of -4b^{2} is 4b^{2}.
-8a^{2}-4b^{2}+4b^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}
Combine -4b^{2} and 4b^{2} to get 0.
a^{2}-\left(2b\right)^{2}-\left(3a-2b\right)\left(3a+2b\right)
Consider \left(a+2b\right)\left(a-2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-2^{2}b^{2}-\left(3a-2b\right)\left(3a+2b\right)
Expand \left(2b\right)^{2}.
a^{2}-4b^{2}-\left(3a-2b\right)\left(3a+2b\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4b^{2}-\left(\left(3a\right)^{2}-\left(2b\right)^{2}\right)
Consider \left(3a-2b\right)\left(3a+2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-4b^{2}-\left(3^{2}a^{2}-\left(2b\right)^{2}\right)
Expand \left(3a\right)^{2}.
a^{2}-4b^{2}-\left(9a^{2}-\left(2b\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
a^{2}-4b^{2}-\left(9a^{2}-2^{2}b^{2}\right)
Expand \left(2b\right)^{2}.
a^{2}-4b^{2}-\left(9a^{2}-4b^{2}\right)
Calculate 2 to the power of 2 and get 4.
a^{2}-4b^{2}-9a^{2}-\left(-4b^{2}\right)
To find the opposite of 9a^{2}-4b^{2}, find the opposite of each term.
a^{2}-4b^{2}-9a^{2}+4b^{2}
The opposite of -4b^{2} is 4b^{2}.
-8a^{2}-4b^{2}+4b^{2}
Combine a^{2} and -9a^{2} to get -8a^{2}.
-8a^{2}
Combine -4b^{2} and 4b^{2} to get 0.